Sci. Tech. Energ. Transition
Volume 77, 2022
Selected Papers from 7th International Symposium on Hydrogen Energy, Renewable Energy and Materials (HEREM), 2021
Article Number 4
Number of page(s) 9
Published online 08 April 2022
  • Lara C., Pascual M.J., Durán A. (2007) Chemical compatibility of RO–BaO–SiO2 (R = Mg, Zn) glass-ceramic seals with SOFC components, J. Glass Sci. Technol. B 48, 218–224. [Google Scholar]
  • Lashtabeg A, Skinner S.J. (2006) Solid oxide fuel cells – a challenge for materials chemists, J. Mater. Chem. 16, 3161–3170. [CrossRef] [Google Scholar]
  • Gao H., Liu J., Chen H., Li S., He T., Ji Y., Zhang J. (2008) The effect of Fe doping on the properties of SOFC electrolyte YSZ, Solid State Ion. 179, 1620–1624. [CrossRef] [Google Scholar]
  • Singhal S.C., Kendall K. (2003) High temperature solid oxide fuel cells: Fundamentals, design and applications, 1st edn., Elsevier, Oxford, UK. [Google Scholar]
  • West A.R. (1999) Basic solid state chemistry, Wiley, New York, USA. [Google Scholar]
  • Tang Z., Lin Q., Mellander B.E., Zhu B. (2010) SDC–LiNa carbonate composite and nanocomposite electrolytes, In. J. Hydrogen Energy 35, 2970–2975. [CrossRef] [Google Scholar]
  • Zhu B., Yang X.T., Xu J., Zhu Z.G., Ji S.J., Sun M.T., Sun J.C. (2003) Innovative low temperature SOFCs and advanced materials, J. Power Sources 118, 47–53. [CrossRef] [Google Scholar]
  • Mat M.D., Liu X., Zhu Z., Zhu B. (2007) Development of cathodes for methanol and ethanol fuelled low temperature (300–600 °C) solid oxide fuel cells, Int. J. Hydrogen Energy 32, 796–801. [CrossRef] [Google Scholar]
  • Zhu B., Liu X., Schober T. (2004) Novel hybrid conductors based on doped ceria and BCY20 for ITSOFC applications, Electrochem. Commun. 6, 378–383. [CrossRef] [Google Scholar]
  • Pikalova E.Y., Maragou V.I., Demina A.N., Demin A.K., Tsiakaras P.E. (2008) The effect of co-dopant addition on the properties of Ln0.2Ce0.8O2 − δ (Ln = Gd, Sm, La) solid-state electrolyte, J. Power Sources 181, 199–206. [CrossRef] [Google Scholar]
  • Steele B.C. (1994) Oxygen transport and exchange in oxide ceramics, J Power Sources 49, 1–4. [CrossRef] [Google Scholar]
  • Steele B.C. (1995) Interfacial reactions associated with ceramic ion transport membranes, Solid State Ion. 75, 157–165. [CrossRef] [Google Scholar]
  • Steele B.C. (2000) Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500 °C, Solid State Ion. 129, 95–110. [CrossRef] [Google Scholar]
  • Xia C., Chen F., Liu M. (2001) Reduced-temperature solid oxide fuel cells fabricated by screen printing, Electrochem. Solid-State Lett. A 4, 52–54. [Google Scholar]
  • Wen L.C., Hsieh C.Y., Tsai Y.I., Lin H.K., Chang S.C., Kao H.C., Sheu H.S., Lee M.C., Lee Y.S. (2013) Electrical properties of Sm-doped Ceria (SDC) and SDC carbonate composite, J. Chin. Chem. Soc. 60, 1359–1364. [CrossRef] [Google Scholar]
  • Zhu W., Xia C., Ding D., Shi X., Meng G. (2006) Electrical properties of ceria-carbonate composite electrolytes, Mater. Res. Bull. 41, 2057–2064. [CrossRef] [Google Scholar]
  • Larson A.C., von Dreele R.B. (2003) General structure analysis system. Report La-UR-86-748. Los Alamos National Laboratory, Los Alamos. [Google Scholar]
  • Shannon R.T. (1974) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32, 751–767. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.