Issue
Sci. Tech. Energ. Transition
Volume 77, 2022
Dossier LES4ECE’21: LES for Energy Conversion in Electric and Combustion Engines, 2021
Article Number 5
Number of page(s) 12
DOI https://doi.org/10.2516/stet/2022004
Published online 22 April 2022
  • Reitz R.D., Ogawa H., Payri R., Fansler T., Kokjohn S., Moriyoshi Y., Agarwal A.K., Arcoumanis D., Assanis D., Bae C., Boulouchos K., Canakci M., Curran S., Denbratt I., Gavaises M., Guenthner M., Hasse C., Huang Z., Ishiyama T., Johansson B., Johnson T.V., Kalghatgi G., Koike M., Kong S.C., Leipertz A., Miles P., Novella R., Onorati A., Richter M., Shuai S., Siebers D., Su W., Trujillo M., Uchida N., Vaglieco B.M., Wagner R.M., Zhao H. (2020) IJER editorial: The future of the internal combustion engine, Int. J. Engine Res. 21, 1, 3–10. [CrossRef] [Google Scholar]
  • Onarati A., Raúl Payri B.M., Vaglieco A.K., Agarwal C., Bae G., Bruneaux M., Canakci M., Gavaises M., Günthner C., Hasse S., Kokjohn S.C., Kong Y., Moriyoshi R., Novella A., Pesyridis R., Reitz T., Ryan R.Wagner, Zhao H. (2022) The role of hydrogen for future internal combustion engines, Int. J. Engine Res.23, 4, 529–540. [CrossRef] [Google Scholar]
  • Pickett L.M. (2013) Engine Combustion Network, Sandia National Laboratory. https://ecn.sandia.gov. [Google Scholar]
  • Kahila H., Wehrfritz A., Kaario O., Masouleh M.G., Maes N., Somers B., Vuorinen V. (2018) Large-Eddy simulation on the influence of injection pressure in reacting Spray A, Combust. Flame 191, 142–159. [CrossRef] [Google Scholar]
  • Kundu P., Scroggins J., Ameen M.M. (2020) A novel in situ flamelet tabulation methodology for the representative interactive flamelet model, Combust. Sci. Technol. 192, 1, 1–25. [CrossRef] [Google Scholar]
  • Peters N. (1988) Laminar flamelet concepts in turbulent combustion, in: Symposium (International) on Combustion, Vol. 21, 1, Elsevier, pp. 1231–1250. [CrossRef] [Google Scholar]
  • Peters N. (1984) Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog. Ener. Combust. Sci. 10, 3, 319–339. [CrossRef] [Google Scholar]
  • Ihme M., See Y.C. (2010) Prediction of autoignition in a lifted methane/air flame using an unsteady flamelet/progress variable model, Combust. Flame 157, 10, 1850–1862. [CrossRef] [Google Scholar]
  • Pitsch H., Wan Y.P., Peters N. (1995) Numerical investigation of soot formation and oxidation under diesel engine conditions, SAE Technical Papers 412. [Google Scholar]
  • Pitsch H., Barths H., Peters N. (1996) Three-dimensional modeling of NOx and soot formation in DI-diesel engines using detailed chemistry based on the interactive flamelet approach, SAE Trans. 2010–2024. [Google Scholar]
  • Barths H., Antoni C., Peters N. (1998) Three-dimensional simulation of pollutant formation in a DI Diesel engine using multiple interactive flamelets, SAE Trans. 987–997. [Google Scholar]
  • Barths H., Hasse C., Bikas G., Peters N. (2000) Simulation of combustion in direct injection diesel engines using a Eulerian particle flamelet model, Proc. Combust. Inst. 28, 1, 1161–1168. [CrossRef] [Google Scholar]
  • Barths H., Hasse C., Peters N. (2000) Computational fluid dynamics modelling of non-premixed combustion in direct injection diesel engines, Int. J. Engine Res. 1, 3, 249–267. [CrossRef] [Google Scholar]
  • Davidovic M., Falkenstein T., Bode M., Cai L., Kang S., Hinrichs J., Pitsch H. (2017) LES of n-Dodecane spray combustion using a multiple representative interactive flamelets model, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 5, 29. [CrossRef] [Google Scholar]
  • Pitsch H., Ihme M. (2005) An unsteady/flamelet progress variable method for les of nonpremixed turbulent combustion, in: 43rd AIAA Aerospace Sciences Meeting and Exhibit – Meeting Papers, pp. 2593–2606. [Google Scholar]
  • Bajaj C., Ameen M., Abraham J. (2013) Evaluation of an unsteady flamelet progress variable model for autoignition and flame lift-off in diesel jets, Combust. Sci. Technol. 185, 3, 454–472. [CrossRef] [Google Scholar]
  • Ameen M.M. (2014) Unsteady flamelet progress variable modeling of reacting diesel jets, Dissertation, Purdue University. [Google Scholar]
  • Lucchini T., D’Errico G., Onorati A., Frassoldati A., Stagni A., Hardy G. (2017) Modeling non-premixed combustion using tabulated kinetics and different fame structure assumptions, SAE Int. J. Engines 10, 2, 593–607. [CrossRef] [Google Scholar]
  • Bekdemir C., Somers L.M.T., De Goey L.P.H. (2011) Modeling diesel engine combustion using pressure dependent Flamelet Generated Manifolds, Proc. Combust. Inst. 33, 2, 2887–2894. [CrossRef] [Google Scholar]
  • Wehrfritz A., Kaario O., Vuorinen V., Somers B. (2016) Large Eddy Simulation of n-dodecane spray flames using Flamelet Generated Manifolds, Combust. Flame 167, 113–131. [Google Scholar]
  • Michel J.B, Colin O., Veynante D. (2008) Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry, Combust. Flame 152, 1–2, 80–99. [CrossRef] [Google Scholar]
  • Tillou J., Michel J.B., Angelberger C., Veynante D. (2014) Assessing LES models based on tabulated chemistry for the simulation of Diesel spray combustion, Combust. Flame 161, 2, 525–540. [CrossRef] [Google Scholar]
  • Aubagnac-Karkar D., Michel J.B., Colin O., Darabiha N. (2018) Combustion and soot modelling of a high-pressure and high-temperature Dodecane spray, Int. J. Engine Res. 19, 4, 434–448. [CrossRef] [Google Scholar]
  • Winklinger J.F. (2014) Implementation of a combustion model based on the flamelet concept and its application to turbulent reactive Sprays, PhD Thesis, Universitat Politecnica de Valencia. [Google Scholar]
  • Desantes J.M., García-Oliver J.M., Novella R., Pérez-Sánchez E.J. (2017) Application of an unsteady flamelet model in a RANS framework for spray A simulation, Appl. Therm. Eng. 117, 50–64. [CrossRef] [Google Scholar]
  • Payri F., García-Oliver J.M., Novella R., Pérez-Sánchez E.J. (2019) Influence of the n-dodecane chemical mechanism on the CFD modelling of the diesel-like ECN Spray A flame structure at different ambient conditions, Combust. Flame 208, 198–218. [CrossRef] [Google Scholar]
  • García-Oliver J.M., Novella R., Pastor J.M., Pachano L. (2020) Computational study of ECN Spray A and Spray D combustion at different ambient temperature conditions, Transport. Eng. 2, 100027. [CrossRef] [Google Scholar]
  • Desantes J.M., García-Oliver J.M., Novella R., Pérez-Sánchez E.J. (2020) Application of a flamelet-based CFD combustion model to the LES simulation of a diesel-like reacting spray, Comput. Fluids 200, 104419. [CrossRef] [MathSciNet] [Google Scholar]
  • Pérez-Sánchez E.J., García-Oliver J.M., Novella R., Pastor J.M. (2020) Understanding the diesel-like spray characteristics applying a flamelet-based combustion model and detailed Large Eddy Simulations, Int. J. Engine Res. 21, 1, 134–150. [CrossRef] [Google Scholar]
  • Michel J.B., Colin O., Veynante D. (2009) Comparison of differing formulations of the PCM model by their application to the simulation of an auto-igniting H2/air Jet, Flow Turbul. Combust. 83, 1, 33–60. [CrossRef] [Google Scholar]
  • Dukowicz J.K. (1980) A particle-fluid numerical model for liquid sprays, J. Comput. Phys. 35, 2, 229–253. [CrossRef] [MathSciNet] [Google Scholar]
  • Stiesch G. (2003) Modeling engine spray and combustion processes, Springer, Berlin Heidelberg, Berlin, Heidelberg. [CrossRef] [Google Scholar]
  • Baumgarten Carsten (2006) Mixture formation in internal combustion engine, Springer-Verlag, Berlin/Heidelberg. [Google Scholar]
  • Wehrfritz A., Vuorinen V., Kaario O., Larmi M. (2013) Large eddy simulation of high-velocity fuel sprays: Studying mesh resolution and breakup model effects for spray A, Atom. Sprays 23, 5, 419–442. [CrossRef] [Google Scholar]
  • Reitz R.D. (1987) Modeling atomization processes in high-pressure vaporizing sprays, Atom. Spray Technol. 3, 309–337. [Google Scholar]
  • Boussinesq J. (1877) Théorie de l’écoulement tourbillant, Mémoires présentés par divers savants à l’Académie des Sciences 23, 46–50. [Google Scholar]
  • Poinsot T., Veynante D. (2012) Theoretical and numerical combustion, 3rd edn., RT Edwards, Inc. [Google Scholar]
  • Nicoud F., Toda H.B., Cabrit O., Bose S., Lee J. (2011) Using singular values to build a subgrid-scale model for Large Eddy Simulations, Phys. Fluids 23, 8, 085106. [CrossRef] [Google Scholar]
  • Pitsch H., Steiner H. (2000) Large-Eddy Simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D), Phys. Fluids 12, 10, 2541–2554. [CrossRef] [Google Scholar]
  • Kempf A., Flemming F., Janicka J. (2005) Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame by LES, Proc. Combust. Inst. 30, 1, 557–565. [CrossRef] [Google Scholar]
  • Sun Z., Gierth S., Pollack M., Hasse C., Scholtissek A. (2021) Ignition under strained conditions: unsteady flamelet progress variable modeling for diesel engine conditions in the transient counterflow configuration, Combust. Flame 240, 111841. [Google Scholar]
  • Domingo P., Vervisch L., Veynante D. (2008) Large-eddy simulation of a lifted methane jet flame in a vitiated coflow, Combust. Flame 152, 3, 415–432. [CrossRef] [Google Scholar]
  • Weise S., Messig D., Meyer B., Hasse C. (2013) An abstraction layer for efficient memory management of tabulated chemistry and flamelet solutions, Combust. Theor. Model. 17, 411–430. [CrossRef] [Google Scholar]
  • Weise S., Hasse C. (2015) Reducing the memory footprint in Large Eddy Simulations of reactive flows, Parallel Comput. 49, 50–65. [CrossRef] [MathSciNet] [Google Scholar]
  • Pierce C.D., Moin P. (2004) Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J. Fluid Mech. 504, 73–97. [CrossRef] [MathSciNet] [Google Scholar]
  • Popp S., Hunger F., Hartl S., Messig D., Coriton B., Frank J.H., Fuest F., Hasse C. (2015) LES flamelet-progress variable modeling and measurements of a turbulent partially-premixed dimethyl ether jet flame, Combust. Flame 162, 8, 3016–3029. [CrossRef] [Google Scholar]
  • Hunger F., Zulkifli M.F., Williams B.A.O., Beyrau F., Hasse C. (2016) A combined experimental and numerical study of laminar and turbulent non-piloted oxy-fuel jet flames using a direct comparison of the Rayleigh signal, Flow Turbulence Combust. 97, 1, 231–262. [CrossRef] [Google Scholar]
  • Steiner H., Pitsch H. (2000) Scalar mixing and dissipation rate in large-eddy simulations of non-premixed turbulent combustion, Proc. Combust. Inst. 28, 1–9. [Google Scholar]
  • Hellström T. (1997) RIF Implementation and Testing, Technical Report. [Google Scholar]
  • Sweby P.K. (1984) High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal. 21, 5, 995–1011. [CrossRef] [MathSciNet] [Google Scholar]
  • Payri R., Salvador F.J., Gimeno J., Bracho G. (2013) Virtual Injection Rate Generator. https://www.cmt.upv.es/ECN03.aspx. [Google Scholar]
  • Pickett L.M., Abraham J.P., Bajaj C. (2009) ECN Diesel Database, SprayA nominal conditions (non-reactive), dataset bkldaAL4. [Google Scholar]
  • Wehrfritz A. (2016) Large Eddy Simulation of fuel spray combustion, PhD Thesis, Aalto University. [Google Scholar]
  • Gadalla M., Kannan J., Tekgül B., Karimkashi S., Kaario O., Vuorinen V. (2020) Large-eddy simulation of ECN Spray A: sensitivity study on modeling assumptions, Energies 13, 13, 3360. [CrossRef] [Google Scholar]
  • Maes N., Meijer M., Dam N., Somers B., Toda H.B., Bruneaux G., Skeen S.A., Pickett L.M., Manin J. (2016) Characterization of Spray A flame structure for parametric variations in ECN constant-volume vessels using chemiluminescence and laser-induced fluorescence, Combust. Flame 174, 138–151. [CrossRef] [Google Scholar]
  • Pickett Lyle M., Skeen S.A. (2012) ECN diesel database, Spray A nominal condtions, dataset jkldnAL4. https://ecn.sandia.gov/ecn-data-search/ . [Google Scholar]
  • Dahms R.N., Paczko G.A., Skeen S.A., Pickett L.M. (2017) Understanding the ignition mechanism of high-pressure spray flames, Proc. Combust. Inst. 36, 2, 2615–2623. [CrossRef] [Google Scholar]
  • Skeen S.A., Manin J., Pickett L.M. (2015) Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames, Proc. Combust. Inst. 35, 3, 3167–3174. [CrossRef] [Google Scholar]
  • Yen M., Abraham J. (2013) Modeling lifted diesel jets: Insights into the correlation between flame lift-off height and soot formation, in: 8th US National Combustion Meeting, Vol. 1, pp. 579–591. [Google Scholar]
  • Pickett L.M. ECN diesel database, Spray A nominal condtions, dataset AJKLDNLASRFA, 2017. https://ecn.sandia.gov/ecn-data-search/. [Google Scholar]
  • Sim H.S., Maes N., Weiss L., Pickett L.M., Skeen S.A. (2020) Detailed measurements of transient two-stage ignition and combustion processes in high-pressure spray flames using simultaneous high-speed formaldehyde PLIF and schlieren imaging, Proc. Combust. Inst. 38, 5713–5721. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.