Issue |
Sci. Tech. Energ. Transition
Volume 77, 2022
The Role of Negative Emissions Technologies in 2050 Decarbonation Pathways
|
|
---|---|---|
Article Number | 19 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.2516/stet/2022018 | |
Published online | 25 October 2022 |
- Rogelj J., Shindell D., Jiang K., Fifita S., Forster P., Ginzburg V., Handa C., Kheshgi H., Kobayashi S., Kriegler E., Mundaca L., Séférian R., Vilariño M.V. (2018) Mitigation pathways compatible with 1.5 °C in the context of sustainable development, in: Masson-Delmotte V., Zhai P., Pörtner H.-O., Roberts D., Skea J., Shukla P.R., Pirani A., Moufouma-Okia W., Péan C., Pidcock R., Connors S., Matthews J.B.R., Chen Y., Zhou X., Gomis M.I., Lonnoy E., Maycock T., Tignor M., Waterfield T. (eds.), Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, IPCC. [Google Scholar]
- Nemet G.F., Callaghan M.W., Creutzig F., Fuss S., Hartmann J., Hilaire J., Lamb W.F., Minx J.C., Rogers S., Smith P. (2018) Negative emissions – Part 3: Innovation and upscaling, Environ. Res. Lett. 13, 6. [Google Scholar]
- Fuss S., Lamb W.F., Callaghan M.W., Hilaire J., Creutzig F., Amann T., Beringer T., Oliveira Garcia W., Hartmann J., Khanna T., Luderer G., Nemet G.F., Rogelj J., Smith P., Vicente J.L.V., Wilcox J., del Mar Zamora Dominguez M., Minx J.C. (2018) Negative emissions – Part 2: Costs, potentials and side effects, Environ. Res. Lett. 13, 6, 63002. [Google Scholar]
- Smith P., Davis S.J., Creutzig F., Fuss S., Minx J., Gabrielle B., Kato E., Jackson R.B., Cowie A., Kriegler E., van Vuuren D.P., Rogelj J., Ciais P., Milne J., Canadell J.G., McCollum D., Peters G., Andrew R., Krey V., Shrestha G., Friedlingstein P., Gasser T., Grübler A., Heidug W.K., Jonas M., Jones C.D., Kraxner F., Littleton E., Lowe J., Roberto Moreira J., Nakicenovic N., Obersteiner M., Patwardhan A., Rogner M., Rubin E., Sharifi A., Torvanger A., Yamagata Y., Edmonds J., Yongsung C. (2016) Biophysical and economic limits to negative CO2 emissions, Nat. Clim. Chang. 6, 1, 42–50. [CrossRef] [Google Scholar]
- Vaughan N.E., Gough C., Mander S., Littleton E.W., Welfle A., Gernaat D.E.H.J., van Vuuren D.P. (2018) Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios, Environ. Res. Lett. 13, 4, 44014. [Google Scholar]
- Rosen R.A., Guenther E. (2016) The energy policy relevance of the 2014 IPCC working group III report on the macro-economics of mitigating climate change, Energy policy 93, 330–4. https://doi.org/10.1016/j.enpol.2016.03.025. [CrossRef] [Google Scholar]
- Workman M., Dooley K., Lomax G., Maltby J., Darch G. (2020) Decision making in contexts of deep uncertainty – An alternative approach for long-term climate policy, Environ. Sci. Policy 103, November 2019, 77–84. https://doi.org/10.1016/j.envsci.2019.10.002. [CrossRef] [Google Scholar]
- Butnar I., Li P.-H., Strachan N., Portugal Pereira J., Gambhir A., Smith P. (2020) A deep dive into the modelling assumptions for biomass with carbon capture and storage (BECCS), Environ. Res. Lett. 15, 8, 84008. [Google Scholar]
- Thornley P., Mohr A. (2018) Policy frameworks and supply-chain accounting, in: Biomass Energy with Carbon Capture Storage, 227–250. [Google Scholar]
- Gough C., Upham P. (2011) Biomass energy with carbon capture and storage (BECCS or Bio-CCS), Greenh. Gases Sci. Technol. 1, 4, 324–334. [CrossRef] [Google Scholar]
- Mac Dowell N., Fajardy M. (2017) Inefficient power generation as an optimal route to negative emissions via BECCS? Environ. Res. Lett. 12, 14. https://doi.org/10.1088/1748-9326/aa67a5. [Google Scholar]
- Clayton C. (2019) Drax group’s bioenergy CCS (BECCS) project, Greenh. Gases Sci. Technol. 9, 2, 130–133. https://doi.org/10.1002/ghg.1863. [CrossRef] [Google Scholar]
- Carminati H.B., Milão R.D.F.D., Medeiros J.L., Araújo O.D.Q.F. (2019) Bioenergy and full carbon dioxide sinking in sugarcane-biorefinery with post-combustion capture and storage, Appl. Energy 254, 113633. https://doi.org/10.1016/j.apenergy.2019.113633. [CrossRef] [Google Scholar]
- Garðarsdóttir S.Ó., Normann F., Skagestad R., Johnsson F. (2018) Investment costs and CO2 reduction potential of carbon capture from industrial plants – A Swedish case study, Int. J. Greenh. Gas Control 76, 111–124. [CrossRef] [Google Scholar]
- Grimaud A., Rouge L. (2014) Carbon sequestration, economic policies and growth, Resour. Energy Econ. 36, 2, 307–331. https://doi.org/10.1016/j.reseneeco.2013.12.004. [CrossRef] [Google Scholar]
- Ricci O. (2012) Providing adequate economic incentives for bioenergies with CO2 capture and geological storage, Energy Policy 44, 362–373. https://doi.org/10.1016/j.enpol.2012.01.066. [CrossRef] [Google Scholar]
- Tsiropoulos I., Hoefnagels R., van den Broek M., Patel M.K., Faaij A.P.C. (2017) The role of bioenergy and biochemicals in CO2 mitigation through the energy system – A scenario analysis for the Netherlands, GCB Bioenergy 9, 9, 1489–1509. https://doi.org/10.1111/gcbb.12447. [CrossRef] [Google Scholar]
- Bui M., Adjiman C.S., Bardow A., Anthony E.J., Boston A., Brown S., Fennell P.S., Fuss S., Galindo A., Hackett L.A., Hallett J.P., Herzog H.J., Jackson G., Kemper J., Krevor S., Maitland G.C., Matuszewski M., Metcalfe I.S., Petit C., Puxty G., Reimer J., Reiner D.M., Rubin E.S., Scott S.A., Shah N., Smit B., Martin Trusler J.P., Webley P., Wilcox J., Mac Dowell N. (2018) Carbon capture and storage (CCS): The way forward, Energy Environ. Sci. 11, 5, 1062–1176. [CrossRef] [Google Scholar]
- Fuss S., Jones C.D., Kraxner F., Peters G.P., Smith P., Tavoni M., van Vuuren D.P., Canadell J.G., Jackson R.B., Milne J., Moreira J.R., Nakicenovic N., Sharifi A., Yamagata Y. (2016) Research priorities for negative emissions, Environ. Res. Lett. 11, 11, 115007. [CrossRef] [Google Scholar]
- Gough C., Garcia-Freites S., Jones C., Mander S., Moore B., Pereira C., Röder M., Vaughan N., Welfle A. (2018) Challenges to the use of BECCS as a keystone technology in pursuit of 1.5 °C, Glob. Sustain. 1, e5, 1–9. https://doi.org/10.1017/sus.2018.3. [CrossRef] [Google Scholar]
- Fajardy M., Patrizio P., Daggash H., Mac Dowell N. (2019) Negative emissions: Priorities for research and policy design, Front. Clim. 1, 1, 6. [CrossRef] [Google Scholar]
- Malone T.W., Crowston K. (1994) The interdisciplinary study of coordination, ACM Comput. Surv. 26, 1, 87–119. [CrossRef] [Google Scholar]
- Boons F.A.A., Baas L.W. (1997) Types of industrial ecology: The problem of coordination, J. Clean. Prod. 5, 1–2, 79–86. [CrossRef] [Google Scholar]
- Molinier R., Da Costa P. (2019) Infrastructure sharing synergies and industrial symbiosis: Optimal capacity oversizing and pricing, J. Ind. Intell. Inf. 7, 1. [Google Scholar]
- Young H.P. (1985) Cost allocation: Methods, principles, applications, North Holland Publishing Co. [Google Scholar]
- Shapley L.S. (1953) 17. A value for n-person games, in: Kuhn H.W., Tucker A.W. (eds), Contributions to the Theory of Games (AM-28), vol. II, Princeton University Press, Princeton, pp. 307–318. [Google Scholar]
- Gillies D.B. (1953) Some theorems on n-person games, Princeton University. [MathSciNet] [Google Scholar]
- Cooper R., John A. (1988) Coordinating coordination failures in Keynesian models, Q. J. Econ. 103, 3, 441–463. https://doi.org/10.2307/1885539. [CrossRef] [Google Scholar]
- Coase R.H. (1937) The nature of the firm, Economica 4, 16, 386–405. [CrossRef] [Google Scholar]
- Williamson O.E. (1979) Transaction-cost economics: The governance of contractual relations, J. Law Econ. 22, 2, 233–261. [CrossRef] [Google Scholar]
- Cacho O.J., Lipper L., Moss J. (2013) Transaction costs of carbon offset projects: A comparative study, Ecol. Econ. 88, 232–243. https://doi.org/10.1016/j.ecolecon.2012.12.008. [CrossRef] [Google Scholar]
- Metz B., Davidson O., Bosch P., Dave R., Meyer L. (2007) Climate change 2007 – Mitigation of climate change, in: Contribution of Working Group III to the Fourth Assessment Report of the IPCC, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. [Google Scholar]
- Haddaway N.R., Woodcock P., Macura B., Collins A. (2015) Making literature reviews more reliable through application of lessons from systematic reviews, Conserv. Biol. 29, 6, 1596–1605. [CrossRef] [Google Scholar]
- Kohl C., McIntosh E.J., Unger S., Haddaway N.R., Kecke S., Schiemann J., Wilhelm R. (2018) Online tools supporting the conduct and reporting of systematic reviews and systematic maps, Environ. Evid. 7, 1, 8. [CrossRef] [Google Scholar]
- Favero A., Massetti E. (2014) Trade of woody biomass for electricity generation under climate mitigation policy, Resour. Energy Econ. 36, 1, 166–190. https://doi.org/10.1016/j.reseneeco.2013.11.005. [CrossRef] [Google Scholar]
- Albanito F., Hastings A., Fitton N., Richards M., Martin M., Mac Dowell N., Bell D., Taylor S.C., Butnar I., Li P.-H., Slade R., Smith P. (2019) Mitigation potential and environmental impact of centralized versus distributed BECCS with domestic biomass production in Great Britain, GCB Bioenergy 11, 10, 1234–1252. [CrossRef] [Google Scholar]
- Mathur V., Roy A. (2019) Perspectives from India on geoengineering, Curr. Sci. 116, 1, 40–46. https://doi.org/10.18520/cs/v116/i1/40-46. [CrossRef] [Google Scholar]
- Fajardy M., Chiquier S., Mac Dowell N. (2018) Investigating the BECCS resource nexus: Delivering sustainable negative emissions, Energy Environ. Sci. 11, 12, 3408–3430. [CrossRef] [Google Scholar]
- Hansson A., Fridahl M., Haikola S., Yanda P., Pauline N., Mabhuye E. (2019) Preconditions for bioenergy with carbon capture and storage (BECCS) in sub-Saharan Africa, Environ. Dev. Sustain. 22, 7, 6851–6875. https://doi.org/10.1007/s10668-019-00517-y. [Google Scholar]
- Mayer B. (2019) Bioenergy with carbon capture and storage, Carbon Clim. Law Rev. 13, 2, 113–121. [CrossRef] [Google Scholar]
- Fajardy M., Mac Dowell N. (2017) Can BECCS deliver sustainable and resource efficient negative emissions? Energy Environ. Sci. 10, 6, 1389–1426. [CrossRef] [Google Scholar]
- Torvanger A. (2019) Governance of bioenergy with carbon capture and storage (BECCS): Accounting, rewarding, and the Paris agreement, Clim. Policy 19, 3, 329–341. [CrossRef] [Google Scholar]
- Cox E., Edwards N.R. (2019) Beyond carbon pricing: policy levers for negative emissions technologies, Clim. Policy 19, 9, 1144–1156. [CrossRef] [Google Scholar]
- Fridahl M., Hansson A., Haikola S. (2020) Towards Indicators for a negative emissions climate stabilisation index: Problems and prospects, Climate 8, 6, 75. https://doi.org/10.3390/cli8060075. [CrossRef] [Google Scholar]
- Leeson D., Mac Dowell N., Shah N., Petit C., Fennell P.S. (2017) A techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources, Int. J. Greenh. Gas Control 61, 71–84. [CrossRef] [Google Scholar]
- Nemet G.F., Callaghan M.W., Creutzig F., Fuss S., Hartmann J., Hilaire J., Lamb W.F., Minx J.C., Rogers S., Smith P. (2018) Negative emissions – Part 3: Innovation and upscaling, Environ. Res. Lett. 13, 6, 063003. https://doi.org/10.1088/1748-9326/aabff4. [CrossRef] [Google Scholar]
- Wang Z., Wang N. (2012) Knowledge sharing, innovation and firm performance, Expert Syst. Appl. 39, 10, 8899–8908. https://doi.org/10.1016/j.eswa.2012.02.017. [CrossRef] [Google Scholar]
- Read A., Tillema O., Ros M., Jonker T., Hylkema H. (2014) Update on the ROAD project and lessons learnt, Energy Procedia 63, 6079–6095. https://doi.org/10.1016/j.egypro.2014.11.640. S1 – 6079–6095 M4 – Citavi. [CrossRef] [Google Scholar]
- Molinier R. (2018) Economic analysis of eco-industrial parks: A transactional approach for synergies valuation and risk management, Université Paris-Saclay, Gif-sur-Yvette. [Google Scholar]
- Levihn F., Linde L., Gustafsson K., Dahlen E. (2019) Introducing BECCS through HPC to the research agenda: The case of combined heat and power in Stockholm, Energy Reports 5, 1381–1389. https://doi.org/10.1016/j.egyr.2019.09.018. [CrossRef] [Google Scholar]
- Buss W., Jansson S., Wurzer C., Mašek O. (2019) Synergies between BECCS and biochar – Maximizing carbon sequestration potential by recycling wood ash, ACS Sustain. Chem. Eng. 7, 4, 4204–4209. https://doi.org/10.1021/acssuschemeng.8b05871. [CrossRef] [Google Scholar]
- Global CCS Institute (2016) Understanding Industrial CCS hubs and clusters. [Google Scholar]
- Sun X., Alcalde J., Bakhtbidar M., Elío J., Vilarrasa V., Canal J., Ballesteros J., Heinemann N., Haszeldine S., Cavanagh A., Vega-Maza D., Rubiera F., Martínez-Orio R., Johnson G., Carbonell R., Marzan I., Travé A., Gomez-Rivas E. (2021) Hubs and clusters approach to unlock the development of carbon capture and storage – Case study in Spain, Appl. Energy 300, 117418. https://doi.org/10.1016/j.apenergy.2021.117418. [CrossRef] [Google Scholar]
- Kjärstad J., Skagestad R., Eldrup N.H., Johnsson F. (2014) Transport of CO2 in the Nordic region, Energy Procedia 63, 2683–2690. https://doi.org/10.1016/j.egypro.2014.11.290. S1 – 8 M4 – Citavi. [CrossRef] [Google Scholar]
- Laude A., Ricci O., Bureau G., Royer-Adnot J., Fabbri A. (2011) CO2 capture and storage from a bioethanol plant: Carbon and energy footprint and economic assessment, Int. J. Greenh. Gas Control 5, 5, 1220–1231. https://doi.org/10.1016/j.ijggc.2011.06.004. [CrossRef] [Google Scholar]
- Baik E., Sanchez D.L., Turner P.A., Mach K.J., Field C.B., Benson S.M. (2018) Geospatial analysis of near-term potential for carbon-negative bioenergy in the United States, Proc. Natl. Acad. Sci. USA 115, 13, 3290–3295. https://doi.org/10.1073/pnas.1720338115. [CrossRef] [PubMed] [Google Scholar]
- Roussanaly S., Jakobsen J.P., Hognes E.H., Brunsvold A.L. (2013) Benchmarking of CO2 transport technologies: Part I—Onshore pipeline and shipping between two onshore areas, Int. J. Greenh. Gas Control 19, 584–594. [CrossRef] [Google Scholar]
- Roussanaly S., Brunsvold A.L., Hognes E.S. (2014) Benchmarking of CO2 transport technologies: Part II – Offshore pipeline and shipping to an offshore site, Int. J. Greenh. Gas Control 28, 283–99. [CrossRef] [Google Scholar]
- ZEP (2011) CO2 storage report. [Google Scholar]
- Krahé M., Heidug W., Ward J., Smale R. (2013) From demonstration to deployment: An economic analysis of support policies for carbon capture and storage, Energy Policy 60, 753–763. [CrossRef] [Google Scholar]
- Sanchez D.L., Johnson N., McCoy S.T., Turner P.A., Mach K.J. (2018) Near-term deployment of carbon capture and sequestration from biorefineries in the United States, Proc. Natl. Acad. Sci. USA 115, 19, 4875–4880. [CrossRef] [PubMed] [Google Scholar]
- Global CCS Institute (2021) Global status of CCS 2021. [Google Scholar]
- Vergragt P.J., Markusson N., Karlsson H. (2011) Carbon capture and storage, bio-energy with carbon capture and storage, and the escape from the fossil-fuel lock-in, Glob. Environ. Chang. 21, 2, 282–292. [CrossRef] [Google Scholar]
- Bhatia S.K., Bhatia R.K., Jeon J.-M., Kumar G., Yang Y.-H. (2019) Carbon dioxide capture and bioenergy production using biological system – A review, Renew. Sustain. Energy Rev. 110, 143–158. https://doi.org/10.1016/j.rser.2019.04.070. [CrossRef] [Google Scholar]
- Fridahl M. (2017) Socio-political prioritization of bioenergy with carbon capture and storage, Energy Policy 104, 89–99. https://doi.org/10.1016/j.enpol.2017.01.050. [CrossRef] [Google Scholar]
- Fridahl M., Lehtveer M. (2018) Bioenergy with carbon capture and storage (BECCS): Global potential, investment preferences, and deployment barriers, Energy Res. Soc. Sci. 42, 155–165. https://doi.org/10.1016/j.erss.2018.03.019. [CrossRef] [Google Scholar]
- Fuss S., Canadell J.G., Peters G.P., Tavoni M., Andrew R.M., Ciais P., Jackson R.B., Jones C.D., Kraxner F., Nakicenovic N., Le Quéré C., Raupach M.R., Sharifi A., Smith P., Yamagata Y. (2014) Betting on negative emissions, Nat. Clim. Chang. 4, 10, 850–853. [CrossRef] [Google Scholar]
- Nehler T., Fridahl M. (2022) Regulatory preconditions for the deployment of bioenergy with carbon capture and storage in Europe, Front. Clim. 4, 874152. [CrossRef] [Google Scholar]
- European Parliament (2021) Legislative porposal on carbon removal certification. Legislative train schedule: A European green deal https://www.europarl.europa.eu/legislative-train/theme-a-european-green-deal/file-carbon-removal-certification [Google Scholar]
- Tamme E., Beck L.L. (2021) European carbon dioxide removal policy: Current status and future opportunities, Front. Clim. 3, 682882. [CrossRef] [Google Scholar]
- Sanchez D.L., Kammen D.M. (2016) A commercialization strategy for carbon-negative energy, Nat. Energy 1, 1, 1–4. https://doi.org/10.1038/NENERGY.2015.2. [Google Scholar]
- Lundberg L., Fridahl M. (2022) The missing piece in policy for carbon dioxide removal: reverse auctions as an interim solution, Discov. Energy 2, 1, 3. https://doi.org/10.1007/s43937-022-00008-8. [CrossRef] [Google Scholar]
- Honegger M., Poralla M., Michaelowa A., Ahonen H.-M. (2021) Who is paying for carbon dioxide removal? Designing policy instruments for mobilizing negative emissions technologies, Front. Clim. 3, 672996. [CrossRef] [Google Scholar]
- Rickels W., Proelß A., Geden O., Burhenne J., Fridahl M. (2021) Integrating carbon dioxide removal into European emissions trading, Front. Clim. 3, 690023. https://doi.org/10.3389/fclim.2021.690023. [CrossRef] [Google Scholar]
- Zakkour P., Kemper J., Dixon T. (2014) Incentivising and accounting for negative emission technologies, Energy Procedia 63, 6824–6833. [CrossRef] [Google Scholar]
- Lemoine D. (2020) Incentivizing negative emissions through carbon shares, NBER Work Pap. [Google Scholar]
- Raupach M.R., Davis S.J., Peters G.P., Andrew R.M., Canadell J.G., Ciais P., Friedlingstein P., Jotzo F., Van Vuuren D.P., Le Quere C. (2014) Sharing a quota on cumulative carbon emissions, Nat. Clim. Chang. 4, 10, 873–879. [CrossRef] [Google Scholar]
- Jagu E., Massol O. (2022) Unlocking CO2 infrastructure deployment: The impact of carbon removal accounting. [Google Scholar]
- UNFCCC (2021) Microsoft: Carbon Negative Goal. UN Global Climate Action Awards. https://unfccc.int/climate-action/un-global-climate-action-awards/climate-neutral-now/microsoft-carbon-negative-goal [accessed December 12, 2021]. [Google Scholar]
- Honegger M., Reiner D. (2018) The political economy of negative emissions technologies, Clim. Policy 18, 3, 306–321. [CrossRef] [Google Scholar]
- Forster J., Vaughan N.E., Gough C., Lorenzoni I., Chilvers J. (2020) Mapping feasibilities of greenhouse gas removal, Glob. Environ. Chang. 63, 102073. [CrossRef] [Google Scholar]
- Creutzig F., Ravindranath N.H., Berndes G., Bolwig S., Bright R., Cherubini F., Chum H., Corbera E., Delucchi M., Faaij A., Fargione J., Haberl H., Heath G., Lucon O., Plevin R., Popp A., Robledo-Abad C., Rose S., Smith P., Smith P., Stromman A., Suh S., Masera O. (2015) Bioenergy and climate change mitigation: An assessment, GCB Bioenergy 7, 5, 916–944. https://doi.org/10.1111/gcbb.12205. [CrossRef] [Google Scholar]
- Kraxner F., Leduc S., Fuss S., Aori K., Kindermann G., Yamagata Y. (2014) Energy resilient solutions for Japan – A BECCS case study, Energy Procedia 61, 2791–2796. [CrossRef] [Google Scholar]
- Galik C.S. (2020) A continuing need to revisit BECCS and its potential, Nat. Clim. Chang. 10, 1, 2–3. https://doi.org/10.1038/s41558-019-0650-2. [CrossRef] [Google Scholar]
- Cuellar A.D., Herzog H. (2015) A path forward for low carbon power from biomass, Energies 8, 3, 1701–1715. https://doi.org/10.3390/en8031701. [CrossRef] [Google Scholar]
- Lomax G., Workman M., Lenton T., Shah N. (2015) Reframing the policy approach to greenhouse gas removal technologies, Energy Policy 78, 125–136. https://doi.org/10.1016/j.enpol.2014.10.002. [CrossRef] [Google Scholar]
- Johnsson F., Kjarstad J., Odenberger M. (2012) The importace of co 2 capture and storage – A geopolitical discussion, Therm. Sci. 16, 3, 655–668. [CrossRef] [Google Scholar]
- Creutzig F., Breyer C., Hilaire J., Minx J., Peters G.P., Socolow R. (2019) The mutual dependence of negative emission technologies and energy systems, Energy Environ. Sci. 12, 6, 1805–1817. https://doi.org/10.1039/c8ee03682a. [CrossRef] [Google Scholar]
- Cumicheo C., Mac Dowell N., Shah N. (2019) Natural gas and BECCS: A comparative analysis of alternative configurations for negative emissions power generation, Int. J. Greenh. Gas Control 90, 102798. https://doi.org/10.1016/j.ijggc.2019.102798. [CrossRef] [Google Scholar]
- Johansson V., Lehtveer M., Göransson L. (2019) Biomass in the electricity system: A complement to variable renewables or a source of negative emissions? Energy 168, 532–541. https://doi.org/10.1016/j.energy.2018.11.112. [CrossRef] [Google Scholar]
- Zakkour P., Scowcroft J., Heidug W. (2014) The role of UNFCCC mechanisms in demonstration and deployment of CCS technologies, Energy Procedia 63, 6945–6958. [CrossRef] [Google Scholar]
- Calvin K., Edmonds J., Bond-Lamberty B., Clarke L., Kim S.H., Kyle P., Smith S.J., Thomson A., Wise M. (2009) 2.6: Limiting climate change to 450 ppm CO2 equivalent in the 21st century, Energy Econ. 31, S107–S120. https://doi.org/10.1016/j.eneco.2009.06.006. [CrossRef] [Google Scholar]
- Clarke L., Edmonds J., Krey V., Richels R., Rose S., Tavoni M. (2009) International climate policy architectures: Overview of the EMF 22 international scenarios, Energy Econ. 31, S64–S81. https://doi.org/10.1016/j.eneco.2009.10.013. [CrossRef] [Google Scholar]
- Ricci O., Selosse S. (2013) Global and regional potential for bioelectricity with carbon capture and storage, Energy Policy 52, 689–698. [CrossRef] [Google Scholar]
- Eom J., Edmonds J., Krey V., Johnson N., Longden T., Luderer G., Riahi K., van Vuuren D.P. (2015) The impact of near-term climate policy choices on technology and emission transition pathways, Technol. Forecast. Soc. Change 90, Part A, 73–88. https://doi.org/10.1016/j.techfore.2013.09.017. [CrossRef] [Google Scholar]
- Stavrakas V., Spyridaki N.-A., Flamos A. (2018) Striving towards the deployment of bio-energy with carbon capture and storage (BECCS): A review of research priorities and assessment needs, Sustainability 10, 7, 2206. [CrossRef] [Google Scholar]
- Tingley D., Tomz M. (2020) International commitments and domestic opinion: the effect of the Paris agreement on public support for policies to address climate change, Env. Polit. 29, 7, 1135–1156. https://doi.org/10.1080/09644016.2019.1705056. [CrossRef] [Google Scholar]
- Falkner R. (2016) The Paris agreement and the new logic of international climate politics, Int. Aff. 92, 5, 1107–1125. https://doi.org/10.1111/1468-2346.12708. [CrossRef] [Google Scholar]
- Manne A.S. (1961) Capacity expansion and probabilistic growth, Econometrica 29, 4, 632. https://doi.org/10.2307/1911809. [CrossRef] [MathSciNet] [Google Scholar]
- Chenery H.B. (1952) Overcapacity and the acceleration principle, Econom. J. Econom. Soc. 1–28. [Google Scholar]
- Perrotton F., Massol O. (2020) Rate-of-return regulation to unlock natural gas pipeline deployment: Insights from a Mozambican project, Energy Econ. 85. https://doi.org/10.1016/j.eneco.2019.104537. [CrossRef] [Google Scholar]
- Hirschman A.O. (2014) Development projects observed, Brookings Institution Press. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.