Issue
Sci. Tech. Energ. Transition
Volume 77, 2022
Dossier LES4ECE’21: LES for Energy Conversion in Electric and Combustion Engines, 2021
Article Number 20
Number of page(s) 16
DOI https://doi.org/10.2516/stet/2022017
Published online 25 October 2022
  • Yugo M., Gordillo V., Shafiei E., Megaritis A. (2021) A look into the life cycle assessment of passenger cars running on advanced fuels, in: Proceedings of the SIA Powertrains & Power Electronics Conference, Paris, France, pp. 9–10. [Google Scholar]
  • Nagasawa T., Okura Y., Yamada R., Sato S., Kosaka H., Yokomori T., Iida N. (2021) Thermal efficiency improvement of super-lean burn spark ignition engine by stratified water insulation on piston top surface, Int. J. Engine Res. 22, 5, 1421–1439. [CrossRef] [Google Scholar]
  • Wang J., Duan X., Liu Y., Wang W., Liu J., Lai M.-C., Li Y., Guo G. (2020) Numerical investigation of water injection quantity and water injection timing on the thermodynamics, combustion and emissions in a hydrogen enriched lean-burn natural gas SI engine, Int. J. Hydrogen Energy 45, 35, 17935–17952. [CrossRef] [Google Scholar]
  • Benoit O., Truffin K., Jay S., van Oijen J., Drouvin Y., Kayashima T., Adomeit P., Angelberger C. (2022) Development of a Large-Eddy Simulation methodology for the analysis of cycle-to-cycle combustion variability of a lean burn engine, Flow Turbul. Combust. 108, 2, 559–598. [CrossRef] [Google Scholar]
  • Enaux B., Granet V., Vermorel O., Lacour C., Pera C., Angelberger C., Poinsot T. (2011) LES study of cycle-to-cycle variations in a spark ignition engine, Proc. Combust. Inst. 33, 2, 3115–3122. [Google Scholar]
  • Truffin K., Angelberger C., Richard S., Pera C. (2015) Using large-eddy simulation and multivariate analysis to understand the sources of combustion cyclic variability in a spark-ignition engine, Combust. Flame 162, 12, 4371–4390. [CrossRef] [Google Scholar]
  • Vermorel O., Richard S., Colin O., Angelberger C., Benkenida A., Veynante D. (2009) Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES, Combust. Flame 156, 8, 1525–1541. [CrossRef] [Google Scholar]
  • Duva B.C., Chance L.E., Toulson E. (2020) Dilution effect of different combustion residuals on laminar burning velocities and burned gas Markstein lengths of premixed methane/air mixtures at elevated temperature, Fuel 267, 117153. [CrossRef] [Google Scholar]
  • Benoit O., Luszcz P., Drouvin Y., Kayashima T., Adomeit P., Brunn A., Jay S., Truffin K., Angelberger C. (2019) Study of ignition processes of a lean burn engine using large-Eddy simulation. Technical report, SAE Technical Paper. [Google Scholar]
  • Sadeghi M., Truffin K., Peterson B., Böhm B., Jay S. (2021) Development and application of Bivariate 2D-EMD for the analysis of instantaneous flow structures and cycle-to-cycle variations of in-cylinder flow, Flow Turbul. Combust. 106, 1, 231–259. [CrossRef] [Google Scholar]
  • Buhl S., Gleiss F., Köhler M., Hartmann F., Messig D., Brücker C., Hasse C. (2017) A combined numerical and experimental study of the 3D tumble structure and piston boundary layer development during the intake stroke of a gasoline engine, Flow Turbul. Combust. 98, 2, 579–600. [Google Scholar]
  • Luszcz P., Takeuchi K., Pfeilmaier P., Gerhardt M., Adomeit P., Brunn A., Kupiek C., Franzke B. (2018) Homogeneous lean burn engine combustion system development – concept study, in: 18th Stuttgart International Symposium-Automotive and Engine Technology, Springer Vieweg, Wiesbaden, pp. 205–224. [CrossRef] [Google Scholar]
  • Senecal P. (2017) Converge (v2.4), Convergent Science Inc., Madison, WI. [Google Scholar]
  • Germano M., Piomelli U., Moin P., Cabot W.H. (1991) A dynamic subgrid-scale Eddy viscosity model, Phys. Fluids A Fluid Dyn. 3, 7, 1760–1765. [CrossRef] [Google Scholar]
  • Senecal P.K., Pomraning E., Richards K.J., Briggs T.E., Choi C.Y., McDavid R.M., Patterson M.A. (2003) Multi-dimensional modeling of direct-injection diesel spray liquid length and flame lift-off length using CFD and parallel detailed chemistry, in: SAE Transactions, pp. 1331–1351. [Google Scholar]
  • Frössling N. (1938) Gerlands beitr, Geophysics 52, 170–175. [Google Scholar]
  • Richard S., Colin O., Vermorel O., Benkenida A., Angelberger C., Veynante D. (2007) Towards large Eddy simulation of combustion in spark ignition engines, Proc. Combust. Inst. 31, 2, 3059–3066. [CrossRef] [Google Scholar]
  • Colin O., Truffin K. (2011) A spark ignition model for large eddy simulation based on an FSD transport equation (ISSIM-LES), Proc. Combust. Inst. 33, 2, 3097–3104. [CrossRef] [Google Scholar]
  • Colin O., Chevillard S., Bohbot J., Senecal P., Pomraning E., Wang M. (2018) Development of a Species-Based Extended Coherent Flamelet Model (SB-ECFM) for Gasoline Direct Injection engine (GDI) simulations, in: Internal Combustion Engine Division Fall Technical Conference, Vol. 51999, American Society of Mechanical Engineers, p. V002T06A016. [Google Scholar]
  • Colin O., Benkenida A., Angelberger C. (2003) 3D modeling of mixing, ignition and combustion phenomena in highly stratified gasoline engines, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 58, 1, 47–62. [CrossRef] [Google Scholar]
  • Hawkes E.R., Cant R.S. (2000) A flame surface density approach to large-Eddy simulation of premixed turbulent combustion, Proc. Combust. Inst. 28, 1, 51–58. [CrossRef] [Google Scholar]
  • Bougrine S., Richard S., Colin O., Veynante D. (2014) Fuel composition effects on flame stretch in turbulent premixed combustion: Numerical analysis of flame-vortex interaction and formulation of a new efficiency function, Flow Turbul. Combust. 93, 2, 259–281. [CrossRef] [Google Scholar]
  • Robert A., Richard S., Colin O., Martinez L., De Francqueville L. (2015) LES prediction and analysis of knocking combustion in a spark ignition engine, Proc. Combust. Inst. 35, 3, 2941–2948. [CrossRef] [Google Scholar]
  • Bounaceur R., Herbinet O., Fournet R., Glaude P.-A., Battin-Leclerc F., Pires Da Cruz A., Yahyaoui M., Truffin K., Moreac G. (2010) Modeling the laminar flame speed of natural gas and gasoline surrogates. Technical Report, SAE Technical Paper. [Google Scholar]
  • Poinsot T., Veynante D. (2005) Theoretical and numerical combustion, RT Edwards Inc. [Google Scholar]
  • Granet V., Vermorel O., Lacour C., Enaux B., Dugué V., Poinsot T. (2012) Large-Eddy simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine, Combust. Flame 159, 4, 1562–1575. [CrossRef] [Google Scholar]
  • Ameen M.M., Yang X., Kuo T.-W., Som S. (2017) Parallel methodology to capture cyclic variability in motored engines, Int. J. Engine Res. 18, 4, 366–377. [CrossRef] [Google Scholar]
  • Matekunas F.A. (1983) Modes and measures of cyclic combustion variability, in: SAE Transactions, pp. 1139–1156. [Google Scholar]
  • Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., Yen N.-C., Tung C.C., Liu H.H. (1998) The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 454, 1971, 903–995. [CrossRef] [MathSciNet] [Google Scholar]
  • Tanaka T., Mandic D.P. (2007) Complex empirical mode decomposition, IEEE Signal Proc. Lett. 14, 2, 101–104. [CrossRef] [Google Scholar]
  • Altaf M.U.B., Gautama T., Tanaka T., Mandic D.P. (2007) Rotation invariant complex empirical mode decomposition, in: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07, Vol. 3, IEEE, p. III–1009. [Google Scholar]
  • Rilling G., Flandrin P., Goncalves P., Lilly J.M. (2007) Bivariate empirical mode decomposition, IEEE Signal Proc. Lett. 14, 12, 936–939. [CrossRef] [Google Scholar]
  • Ur Rehman N., Mandic D.P. (2009) Empirical mode decomposition for trivariate signals, IEEE Trans. Signal Proc. 58, 3, 1059–1068. [Google Scholar]
  • Ur Rehman N., Mandic D.P. (2011) Filter bank property of multivariate empirical mode decomposition, IEEE Trans. Signal Proc. 59, 5, 2421–2426. [CrossRef] [Google Scholar]
  • Ur Rehman N., Park C., Huang N.E., Mandic D.P. (2013) EMD Via MEMD: Multivariate noise-aided computation of standard EMD, Adv. Adapt. Data Anal. 5, 2, 1350007. [CrossRef] [MathSciNet] [Google Scholar]
  • Hemakom A., Goverdovsky V., Looney D., Mandic D.P. (2016) Adaptive-projection intrinsically transformed multivariate empirical mode decomposition in cooperative brain–computer interface applications, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 374, 2065, 20150199. [CrossRef] [PubMed] [Google Scholar]
  • Sadeghi M., Foucher F., Abed-Meraim K., Mounam-Rousselle C. (2019) Bivariate 2D empirical mode decomposition for analyzing instantaneous turbulent velocity field in unsteady flows, Exp. Fluids 60, 8, 1–26. [CrossRef] [Google Scholar]
  • Fogleman M., Lumley J., Rempfer D., Haworth D. (2004) Application of the proper orthogonal decomposition to datasets of internal combustion engine flows, J. Turbul. 5, 1, 023. [CrossRef] [Google Scholar]
  • Voisine M., Thomas L., Borée J., Rey P. (2011) Spatio-temporal structure and cycle to cycle variations of an in-cylinder tumbling flow, Exp. Fluids 50, 5, 1393–1407. [CrossRef] [Google Scholar]
  • Abraham P., Liu K., Haworth D., Reuss D., Sick V. (2014) Evaluating Large-Eddy Simulation (LES) and high-speed Particle Image Velocimetry (PIV) with phase-invariant Proper Orthogonal Decomposition (POD), Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 69, 1, 41–59. [CrossRef] [Google Scholar]
  • Cao J., Ma Z., Li X., Xu M. (2019) 3d proper orthogonal decomposition analysis of engine in-cylinder velocity fields, Meas. Sci. Technol. 30, 8, 085304. [CrossRef] [Google Scholar]
  • Rulli F., Fontanesi S., d’Adamo A., Berni F. (2021) A critical review of flow field analysis methods involving proper orthogonal decomposition and quadruple proper orthogonal decomposition for internal combustion engines, Int. J. Engine Res. 22, 1, 222–242. [CrossRef] [Google Scholar]
  • Graftieaux L., Michard M., Grosjean N. (2001) Combining piv, pod and vortex identification algorithms for the study of unsteady turbulent swirling flows, Meas. Sci. Technol. 12, 9, 1422. [CrossRef] [Google Scholar]
  • Bücker I., Karhoff D.-C., Klaas M., Schröder W. (2012) Stereoscopic multi-planar piv measurements of in-cylinder tumbling flow, Exp. Fluids 53, 6, 1993–2009. [CrossRef] [Google Scholar]
  • Janas P., Wlokas I., Böhm B., Kempf A. (2017) On the evolution of the flow field in a spark ignition engine, Flow Turbul. Combust. 98, 1, 237–264. [CrossRef] [Google Scholar]
  • Nicollet F. (2019) Analysis of cyclic phenomena in a gasoline direct injection engine of flow and mixture formation using Large-Eddy Simulation and high-speed particle image velocimetry. [Google Scholar]
  • Gohlke M., Beaudoin J.-F., Amielh M., Anselmet F. (2008) Thorough analysis of vortical structures in the flow around a yawed bluff body, J. Turbul. 9, N15. [CrossRef] [Google Scholar]
  • Schmitt M., Hu R., Wright Y.M., Soltic P., Boulouchos K. (2015) Multiple cycle LES simulations of a direct injection natural gas engine, Flow Turbul. Combust. 95, 4, 645–668. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.