Open Access
Issue
Sci. Tech. Energ. Transition
Volume 77, 2022
Article Number 14
Number of page(s) 10
DOI https://doi.org/10.2516/stet/2022014
Published online 08 July 2022
  • Cook J., Oreskes N., Doran P.T., Anderegg W.R., Verheggen B., Maibach E.W., Carlton J.S., Lewandowsky S., Skuce A.G., Green S.A. (2016) Consensus on consensus: A synthesis of consensus estimates on human-caused global warming, Environ. Res. Lett. 11, 048002. [CrossRef] [Google Scholar]
  • Song X.-P., Hansen M.C., Stehman S.V., Potapov P.V., Tyukavina A., Vermote E.F., Townshend J.R. (2018) Global land change from 1982 to 2016, Nature 560, 639–643. [CrossRef] [PubMed] [Google Scholar]
  • Agarwal A.K. (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines, Prog. Energy Combust. Sci. 33, 233–271. [CrossRef] [Google Scholar]
  • Santos D.C., Lamim M.N., Costa D.S., Mehl A., Couto P., Paredes M.L. (2021) Experimental and modeling studies of density and viscosity behavior of a live fluid due to CO2 injection at reservoir condition, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 76, 45. [CrossRef] [Google Scholar]
  • Chiche D., Diverchy C., Lucquin A.-C., Porcheron F., Defoort F. (2013) Synthesis gas purification, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 68, 4, 707–723. [CrossRef] [Google Scholar]
  • Ellabban O., Abu-Rub H., Blaabjerg F. (2014) Renewable energy resources: Current status, future prospects and their enabling technology, Renew. Sustain. Energy Rev. 39, 748–764. [CrossRef] [Google Scholar]
  • Dey S., Reang N.M., Das P.K., Deb M. (2021) A comprehensive study on prospects of economy, environment, and efficiency of palm oil biodiesel as a renewable fuel, J. Clean. Prod. 286, 124981. [CrossRef] [Google Scholar]
  • Mahdavianpour M., Pourakbar M., Alavi N., Masihi N., Mirzaei F., Aghayani E. (2020) Biodiesel production from waste frying oils in the presence of zeolite synthesized from steel furnace slag, Int. J. Environ. Anal. Chem., 1–14. https://doi.org/10.1080/03067319.2020.1863957. [CrossRef] [Google Scholar]
  • Guo M., Song W., Buhain J. (2015) Bioenergy and biofuels: History, status, and perspective, Renew. Sustain. Energy Rev. 42, 712–725. [CrossRef] [Google Scholar]
  • Demirbas A. (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections, Energy Convers. Manag. 49, 2106–2116. [CrossRef] [Google Scholar]
  • Knothe G. (2010) Biodiesel and renewable diesel: A comparison, Prog. Energy Combust. Sci. 36, 364–373. [CrossRef] [Google Scholar]
  • Moser B.R. (2011) Biodiesel production, properties, and feedstocks, Biofuels 285–347. https://doi.org/10.1007/978-1-4419-7145-6_15. [CrossRef] [Google Scholar]
  • Patouillard L., Collet P. (2016) Sensitivity of technical choices on the GHG emissions and expended energy of hydrotreated renewable jet fuel from microalgae, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 71, 1, 11. [CrossRef] [Google Scholar]
  • Jaecker-Voirol A., Durand I., Hillion G., Delfort B., Montagne X. (2008) Glycerin for new biodiesel formulation, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 63, 4, 395–404. [CrossRef] [Google Scholar]
  • Knothe G., Razon L.F. (2017) Biodiesel fuels, Prog. Energy Combust. Sci. 58, 36–59. [CrossRef] [Google Scholar]
  • Borugadda V.B., Goud V.V. (2012) Biodiesel production from renewable feedstocks: Status and opportunities, Renew. Sustain. Energy Rev. 16, 4763–4784. [CrossRef] [Google Scholar]
  • Ma F., Hanna M.A. (1999) Biodiesel production: A review, Bioresour. Technol. 70, 1–15. [CrossRef] [Google Scholar]
  • Vilcocq L., Cabiac A., Especel C., Guillon E., Duprez D. (2013) Transformation of sorbitol to biofuels by heterogeneous catalysis: Chemical and industrial considerations, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 68, 5, 841–860. [CrossRef] [Google Scholar]
  • Meher L.C., Vidya Sagar D., Naik S.N. (2006) Technical aspects of biodiesel production by transesterification – a review, Renew. Sustain. Energy Rev. 10, 248–268. [CrossRef] [Google Scholar]
  • Mercy Nisha Pauline J., Sivaramakrishnan R., Pugazhendhi A., Anbarasan T., Achary A. (2021) Transesterification kinetics of waste cooking oil and its diesel engine performance, Fuel 285, 119108. [CrossRef] [Google Scholar]
  • Saini R.D. (2017) Conversion of waste cooking oil to biodiesel, Int. J. Pet. Sci. Technol. 11, 9–21. [Google Scholar]
  • Pleanjai S., Gheewala S.H. (2009) Full chain energy analysis of biodiesel production from palm oil in Thailand, Appl. Energy 86, S209–S214. [CrossRef] [Google Scholar]
  • Gui M.M., Lee K.T., Bhatia S. (2008) Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock, Energy 33, 1646–1653. [CrossRef] [Google Scholar]
  • Chhetri A.B., Watts K.C., Islam M.R. (2008) Waste cooking oil as an alternate feedstock for biodiesel production, Energies 1, 3–18. [CrossRef] [Google Scholar]
  • Yusuff A.S., Gbadamosi A.O., Popoola L.T. (2021) Biodiesel production from transesterified waste cooking oil by zinc-modified anthill catalyst: Parametric optimization and biodiesel properties improvement, J. Environ. Chem. Eng. 9, 104955. [CrossRef] [Google Scholar]
  • Chen C., Chitose A., Kusadokoro M., Nie H., Xu W., Yang F., Yang S. (2021) Sustainability and challenges in biodiesel production from waste cooking oil: An advanced bibliometric analysis, Energy Rep. 7, 4022–4034. [CrossRef] [Google Scholar]
  • Vignesh P., Kumar A.R.P., Ganesh N.S., Jayaseelan V., Sudhakar K. (2021) Biodiesel and green diesel generation: an overview, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 76, 6. [CrossRef] [Google Scholar]
  • Gupta N., Sonambekar A.A., Daksh S.K., Tomar L. (2013) A rare presentation of methanol toxicity, Ann. Indian Acad. Neurol. 16, 249. [CrossRef] [PubMed] [Google Scholar]
  • Tassalit D., Chekir N., Benhabiles O., Mouzaoui O., Mahidine S., Merzouk N.K., Bentahar F., Khalil A. (2016) Effect and interaction study of acetamiprid photodegradation using experimental design, Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 74, 1953–1963. [CrossRef] [PubMed] [Google Scholar]
  • Amini Niaki S.R., Kharrat F.G.Z. (2019) Effect of fiber chemical treatments on performance of date palm fibers using response surface methodology, Environ. Prog. Sustain. Energy 38, 13177. [CrossRef] [Google Scholar]
  • Assassi M., Madjene F., Harchouche S., Boulfiza H. (2021) Photocatalytic treatment of crystal violet in aqueous solution: Box-Behnken optimization and degradation mechanism, Environ. Prog. Sustain. Energy 40, e13702. [CrossRef] [Google Scholar]
  • Borah M.J., Das A., Das V., Bhuyan N., Deka D. (2019) Transesterification of waste cooking oil for biodiesel production catalyzed by Zn substituted waste egg shell derived CaO nanocatalyst, Fuel 242, 345–354. [CrossRef] [Google Scholar]
  • Veljković V.B., Veličković A.V., Avramović J.M., Stamenković O.S. (2019) Modeling of biodiesel production: Performance comparison of Box-Behnken, face central composite and full factorial design, Chin. J. Chem. Eng. 27, 1690–1698. [CrossRef] [Google Scholar]
  • Ahmia A.C., Danane F., Bessah R., Boumesbah I. (2014) Raw material for biodiesel production, valorization of used edible oil, J. Renew. Energ. 17, 335–343. [Google Scholar]
  • Ahmia A.C., Danane F., Bessah R., Boumesbah I. (2015) Biodiesel production from non-comestible oils, in: Dincer I., Colpan C., Kizilkan O., Ezan M. (eds), Progress in clean energy, Vol. 2, Springer, Cham, pp. 113–120. [CrossRef] [Google Scholar]
  • Alloune R., Abdat M.Y., Saad A., Danane F., Bessah R., Abada S., Aziza M.A. (2021) Response surface methodology based optimization of transesterification of waste cooking oil, in: Khellaf A. (ed), Advances in renewable hydrogen and other sustainable energy carriers, Springer, Singapore, pp. 177–184. [CrossRef] [Google Scholar]
  • Danane F., Bessah R., Mahfoud O., Boudiaf A., Ahmia A.C., Ouyahia S.-E., Alloune R., Benkahla Y.K. (2020) Heat transfer and fluid flow of Biodiesel at a backward-Facing step, in: MATEC Web of Conferences, International Conference on Materials & Energy (ICOME’17 and ICOME’18), 30 April to 04 May 2018 at San Sebastian, Espagne, EDP Sciences, 01019 p. [CrossRef] [EDP Sciences] [Google Scholar]
  • Ahmia A.C., Danane F., Alloune R., Bessah R. (2018) Experimental investigation on citrullus colocynthis oil as alternative fuel, in: Aloui F., Dincer I. (eds), Exergy for a better environment and improved sustainability 2, Green Energy and Technology, Springer, Cham, pp. 333–339. [CrossRef] [Google Scholar]
  • Da Silva W.L., de Souza P.T., Shimamoto G.G., Tubino M. (2015) Separation of the glycerol-biodiesel phases in an ethyl transesterification synthetic route using water, J. Braz. Chem. Soc. 26, 1745–1750. [Google Scholar]
  • Freedman B., Pryde E.H., Mounts T.L. (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils, J. Am. Oil Chem. Soc. 61, 1638–1643. [CrossRef] [Google Scholar]
  • Ramadhas A.S., Jayaraj S., Muraleedharan C. (2005) Biodiesel production from high FFA rubber seed oil, Fuel 84, 335–340. [CrossRef] [Google Scholar]
  • Tiwari A.K., Kumar A., Raheman H. (2007) Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process, Biomass Bioenergy 31, 569–575. [CrossRef] [Google Scholar]
  • Dhawane S.H., Karmakar B., Ghosh S., Halder G. (2018) Parametric optimisation of biodiesel synthesis from waste cooking oil via Taguchi approach, J. Environ. Chem. Eng. 6, 3971–3980. [CrossRef] [Google Scholar]
  • Phan A.N., Phan T.M. (2008) Biodiesel production from waste cooking oils, Fuel 87, 3490–3496. [CrossRef] [Google Scholar]
  • Sarno M., Iuliano M. (2019) Biodiesel production from waste cooking oil, Green Process. Synth. 8, 828–836. [CrossRef] [Google Scholar]
  • Ma F., Clements L.D., Hanna M.A. (1998) The effects of catalyst, free fatty acids, and water on transesterification of beef tallow, Trans. ASAE 41, 1261. [CrossRef] [Google Scholar]
  • Encinar J.M., González J.F., Rodríguez-Reinares A. (2007) Ethanolysis of used frying oil. Biodiesel preparation and characterization, Fuel Process. Technol. 88, 513–522. [CrossRef] [Google Scholar]
  • Hájek M., Skopal F., Čapek L., Černoch M., Kutálek P. (2012) Ethanolysis of rapeseed oil by KOH as homogeneous and as heterogeneous catalyst supported on alumina and CaO, Energy 48, 392–397. [CrossRef] [Google Scholar]
  • Stamenković O.S., Veličković A.V., Veljković V.B. (2011) The production of biodiesel from vegetable oils by ethanolysis: Current state and perspectives, Fuel 90, 3141–3155. [CrossRef] [Google Scholar]
  • Sathish Kumar R., Purayil S.T.P. (2019) Optimization of ethyl ester production from arachis hypogaea oil, Energy Rep. 5, 658–665. [CrossRef] [Google Scholar]
  • Bouaid A., Martinez M., Aracil J. (2007) A comparative study of the production of ethyl esters from vegetable oils as a biodiesel fuel optimization by factorial design, Chem. Eng. J. 134, 93–99. [CrossRef] [Google Scholar]
  • Mathiyazhagan M., Ganapathi A. (2011) Factors affecting biodiesel production, Res. Plant Biol. 1, 1–5. [Google Scholar]
  • Garlapati V.K., Kant R., Kumari A., Mahapatra P., Das P., Banerjee R. (2013) Lipase mediated transesterification of Simarouba glauca oil: a new feedstock for biodiesel production, Sustain. Chem. Process. 1, 1–6. [CrossRef] [Google Scholar]
  • Sakthivel R., Ramesh K., Purnachandran R., Mohamed Shameer P. (2018) A review on the properties, performance and emission aspects of the third generation biodiesels, Renew. Sustain. Energy Rev. 82, 2970–2992. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.