Open Access
Review
Issue |
Sci. Tech. Energ. Transition
Volume 77, 2022
|
|
---|---|---|
Article Number | 13 | |
Number of page(s) | 43 | |
DOI | https://doi.org/10.2516/stet/2022006 | |
Published online | 05 July 2022 |
- Bonijoly D., Sureau J.F., Steinberg M. (1996) GPF Ardèche: A scientific drilling programme for fluid-rock interaction studies along an extensional Paleo-margin, Mar. Pet. Geol. 13, 6, 605–606. https://doi.org/10.1016/0264-8172(96)82615-8. [CrossRef] [Google Scholar]
- Giot D., Roure F., Elmi S., Lajat D., Steinberg M. (1991) The discovery of major extensional faults of Jurassic age on the continental margin of the Southeast Basin, Ardèche, France (GPF program), CR Acad. Sci. Paris 312-II, 747–754. [Google Scholar]
- Giot D., Roure F., Dromart G., Elmi S., Naville C., Perrin J., Steinberg M. (1991) Dynamics of a passive Jurassic margin: the main phases in the activity of the Uzer fault as revealed by Balazuc drill hole 1, Ardèche, France, CR Acad. Sci. Paris 313-II, 1463–1469. [Google Scholar]
- Bonijoly D., Perrin J., Roure F., Bergerat F., Courel L., Elmi S., Mignot A., the GPF Team (1996) The Ardèche paleomargin of the South-East Basin of France: Mesozoic evolution of a part of the Tethyan continental margin (Géologie Profonde de la France programme), Mar. Pet. Geol. 13, 6, 607–623. https://doi.org/10.1016/0264-8172(95)00075-5. [CrossRef] [Google Scholar]
- Martin P., Bergerat F. (1996) Palaeo-stresses inferred from macro- and microfractures in the Balazuc-1 borehole (GPF programme). Contribution to the tectonic evolution of the Cévennes border of the SE Basin of France, Mar. Pet. Geol. 13, 6, 671–684. [CrossRef] [Google Scholar]
- Gratacos B., Bale R., Granger P.Y. (2009) Amplitude effects associated with shear wave splitting, in: SEG Technical Program Expanded Abstracts, pp. 4284–4288. https://doi.org/10.1190/1.3255779. [CrossRef] [Google Scholar]
- Naville C. (1988) Method of measuring the anisotropy of propagation or reflection of a transverse wave, particularly a method of geophysical prospecting by measurement of the anisotropy of propagation or reflection of shear waves in rocks. US Patent 4,789,969. [Google Scholar]
- Far M.E., Liu E., Downton J. (2015) Introduction to special section: fractures. SEG Library, Interpretation 3, 3, 1A–T181. https://library.seg.org/doi/epub/10.1190/INT2015-0611-SPSEINTRO.1. https://www.researchgate.net/publication/282462777_Introduction_to_special_section_Fractures. [CrossRef] [Google Scholar]
- Belaud D., Standen E. (1995) Fracture using Shear anisotropy and electric images, in: 3rd International Symposium on Geotomography-Fracture imaging, November 8–10, Tokyo. [Google Scholar]
- Esmersoy C., Koster K., Williams M., Boyd A., Kane M. (1994) Dipole shear anisotropy logging, in: 60th Annual Meeting, SEG, 1994, Expanded abstracts, Paper SL3.7. [Google Scholar]
- Alford R.M. (1986) Shear data in presence of azimuthal anisotropy, in: 56th Annual Meeting, SEG, Expanded abstracts, pp. 476–479. [Google Scholar]
- Naville C. (1986) Detection of anisotropy using shear wave splitting 1986 in VSP surveys: Requirements and applications, in: 56th Annual Meeting, SEG, Expanded abstracts S5.2, pp. 391–394. [Google Scholar]
- Kimball C., Marzetta T. (1984) Semblance processing of borehole acoustic array data, Geophysics 49, 272–281. [Google Scholar]
- Bouchon M., Schmitt D.P. (1989) Full wave logging in an irregular borehole, Geophysics 54, 758–765. https://doi.org/10.1190/1.1442618. [CrossRef] [Google Scholar]
- Coppens F., Mari J.L. (1995) Application of the intercept time method to full waveform acoustic data, First Break 13, 1. [CrossRef] [Google Scholar]
- Hornby B. (1993) Tomographic reconstruction of near-borehole slowness using refracted borehole sonic arrivals, Geophysics 58, 12, 1726–1738. https://doi.org/10.1190/1.1443387. [CrossRef] [Google Scholar]
- Tang X., Xu S., Zhuang C., Chen X. (2016) Quantitative evaluation of rock brittleness and fracability based on elastic-wave velocity variation around borehole, Pet. Explor. Dev. 43, 3, 457–464. https://doi.org/10.1016/S1876-3804(16)30053-2. [CrossRef] [Google Scholar]
- Plona T., Sinha B., Kane M., Shenoy R., Bose S., Walsh J., Endo T., Ikegami T. (2002) Mechanical damage detection and anisotropy evaluation using dipole sonic dispersion analysis, in: Paper presented at the SPWLA 43rd Annual Logging Symposium, Oiso, Japan, 2–5 June 2002. [Google Scholar]
- Su Y., Zhen L., Xu S., Zhuang C., Tang X. (2018) Elastic-wave evaluation of downhole hydraulic fracturing: Modeling and field applications, Geophysics 83, 1, 1JF-Z3. https://doi.org/10.1190/geo2017-0054.1. [Google Scholar]
- Tang X., Chunduru R.K. (1999) Simultaneous inversion of formation shear-wave anisotropy parameters from cross-dipole acoustic-array waveform data, Geophysics 64, 5, 1502–1511. https://doi.org/10.1190/1.1444654. [CrossRef] [Google Scholar]
- Market J., Mejia C., Mutlu O., Shahri M.P., Tudge J. (2015) Untangling acoustic anisotropy, in: Paper presented at the SPWLA 56th Annual Logging Symposium, Long Beach, California, USA, July 2015. [Google Scholar]
- Hornby B.E., Howie J.M., Ince D.W. (1999) Anisotropy correction for deviated well sonic logs: Application to seismic well tie, in: 65th Annual Meeting, SEG. Expanded Abstracts. https://doi.org/10.1190/1.1820700 . [Google Scholar]
- Blanch J.O., Cheng A.C.H., Varsamis G.L. (2002) A method to extract fast and slow shear wave velocities in an anisotropic formation, in: SEG Expanded Abstracts, pp. 352–355. https://doi.org/10.1190/1.1817251. [Google Scholar]
- Sondergeld C.H., Rai C.S. (1992) Laboratory observations of shear-wave propagation in anisotropic media, The Leading Edge of Exploration 11, 2,38–43. [CrossRef] [Google Scholar]
- Zhuang C., Xu S., Li H., Su Y., Tang X. (2019) Azimuthal shear-wave anisotropy measurement in a borehole: Physical modelling and dipole acoustic verification, JASA 146, EL129. https://doi.org/10.1121/1.5120551. [CrossRef] [PubMed] [Google Scholar]
- Kessler C., Varsamis G.L. (2001) A new generation crossed dipole logging tool: design and case histories, in: SPE 71740, 2001, SPE Annual Conference, New Orleans, Louisiana. [Google Scholar]
- Humbert F., Louis L., Barnes C., Robion P., David C., Song S.R. (2012) Lithological control on shear-wave velocity anisotropy in core samples from the Taiwan Chelungpu Fault Drilling Project, J. Asian Earth Sci. 63–72. https://doi.org/10.1016/j.jseaes.2012.02.012. [CrossRef] [Google Scholar]
- Hung J.-H., Ma K.-F., Wang C.-Y., Ito H., Lin W., Yeh E.-C. (2009) Subsurface structure, physical properties, fault-zone characteristics and stress state in scientific drill holes of Taiwan Chelungpu Fault Drilling Project, Techtonophysics 466, 307–321. https://doi.org/10.1016/j.tecto.2007.11.014. [CrossRef] [Google Scholar]
- Morris C.F., Little T.M., Letton W. (1984) A new sonic array tool for full waveform logging, in: Paper Number: SPE-13285-MS, SPE Annual Conference, Houston, Texas, September 1984. https://doi.org/10.2118/13285-MS. [Google Scholar]
- Brie A., Endo T., Hoyle D., Codazzi D., Esmersoy C., Hsu K. (1998) New directions in sonic logging, Oilfield Rev. 10, 40–55. Schlumberger. https://www.academia.edu/23890995/DSI_Logging_Applications. https://docplayer.net/10128122-New-directions-in-sonic-logging.html . [Google Scholar]
- Close D., Cho D., Horn F., Edmundson H. (2009) The sound of sonic: a historical perspective and introduction to acoustic logging, CSEG Record. 34, 5. https://csegrecorder.com/articles/view/the-sound-of-sonic-a-historical-perspective-and-intro-to-acoustic-logging. [Google Scholar]
- Donald J.A., Wielemaker E.J., Karpfinger F., Liang X., Tingay M. (2015) Qualifying stress direction from borehole shear sonic anisotropy, in: 49th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, California, June 2015. ARMA-2015-364. [Google Scholar]
- Tang X. (2017) Advances in borehole acoustic reflection imaging, ASA Proc. Mtgs. Acoust. 32, 032001. https://doi.org/10.1121/2.0000705. [Google Scholar]
- Deflandre J.P., Grard G. (1992) Anelastic strain recovery measurements on the site of Balazuc “Géologie Profonde de la France” Program, in Documents du BRGM, n°223, in: VIth International Symposium. Continental Scientific Drilling Programs, Paris, April 1992. [Google Scholar]
- Deflandre J.P., Sarda J.P. (1992) Core relaxation measurements on compacted sedimentary formations (well Ba 1), in: Proc 33rd US Symposium on Rock Mechanics, Santa Fe, 3–5 June 1992, Publ Rotterdam: A A Balkema, pp. 49–57. ISBN 90 5410 0451. [Google Scholar]
- Prioul R., Plona T., Kane M., Sinha B., Kaufman P., Signer C. (2004) Azimuthal anisotropy using shear sonic imager: Insights from the AIG 10 well, Corinth Rift Laboratory [Anisotropie azimutale par diagraphie sonique des ondes de cisaillement: données du forage AIG 10, laboratoire du rift de Corinthe], CR Geosci. 336, 477–485. https://doi.org/10.1016/j.crte.2003.11.008. https://www.sciencedirect.com/science/article/pii/S1631071304000173. [CrossRef] [Google Scholar]
- Naville C., Cuenot N., Tselentis A., Kazemi K., Serbutoviez S., Bruneau J. (2021) S-wave birefringence variations from stress, pore pressure? in: 55th US Rock Mechanics/Geomechanics Symposium, Houston, Virtual, June 2021, ARMA 21-A-1794. https://onepetro.org/ARMAUSRMS/proceedings-abstract/ARMA21/All-ARMA21/ARMA-2021-1794/468253. [Google Scholar]
- Rousseau A. (2006) Model of horizontal stress in the Aigion10 well (Corinth) calculated from acoustic body waves. https://hal.archives-ouvertes.fr/hal-00018406/document [Google Scholar]
- Prioul R., Donald A., Koepsell R., El Marzouki Z., Bratton T. (2007) Forward modeling of fracture-induced sonic anisotropy using a combination of borehole image and sonic logs, Geophysics 72, 4, E135–E147. https://doi.org/10.1190/1.2734546. [CrossRef] [Google Scholar]
- Donald A., Bratton T. (2006) Advancements in acoustic techniques for evaluating natural fractures, in: SPWLA 47th Annual Logging Symposium, Veracruz, Mexico, June 4–7, 2006. [Google Scholar]
- Arroyo Franco J.L., Mercado Ortiz M.A., De G.S., Renlie L., Williams S. (2006) Sonic investigations in and around the borehole, Oilfield Rev. 14–33. Schlumberger. https://www.researchgate.net/publication/289978814_Sonic_investigations_in_and_around_the_borehole . [Google Scholar]
- Dellinger J.A., Nolte B., Etgen J.T. (2001) Alford rotation, ray theory, and crossed-dipole geometry, Geophysics 66, 2, 637–647. [CrossRef] [Google Scholar]
- Sun H., Prioul R. (2010) Relating shear sonic anisotropy directions to stress in deviated wells, Geophysics 75, 5, D57–D67. [CrossRef] [Google Scholar]
- Tang X.M., Gu X.H., Lee S.Q. (2020) Borehole acoustic reflection imaging through casing: theory and application, in: 82nd EAGE Annual Meeting, Expanded Abstracts Fr_P05_08, December 2020. [Google Scholar]
- Lee S.Q., Chen M., Gu X.H., Su Y.D., Tang X.M. (2019) Application of four-component dipole shear reflection imaging to interpret the geological structure around a deviated well, Appl. Geophys. 16, 291–301. https://doi.org/10.1007/s11770-019-0778-x. [CrossRef] [Google Scholar]
- Wielemaker E., Cavalleri C., Dahlhaus L., Reynaldos A., Sosio G., Ungemach P., Antics M., Davaux M. (2020) Delineating the geothermal structure and flow properties in a sub-horizontal well with the use of wireline and LWD data in a multiphysics approach, in: 2020 SPWLA 61st Annual Online Symposium, June 22, 2020. https://doi.org/10.30632/SPWLA-5065. [Google Scholar]
- Crampin S. (1998) Shear-wave splitting in a critical crust: the next step. Oil Gas Sci. Technol – Rev. IFP 53, 5, 749–763. Proceedings of the Eighth International Workshop on Seismic Anisotropy (81WSA), 20–24 April 1998. https://hal.archives-ouvertes.fr/hal-02079026/document. https://ogst.ifpenergiesnouvelles.fr/articles/ogst/pdf/1998/05/crampin_v53n5.pdf [Google Scholar]
- Crampin S., Gao Y. (2006) A review of techniques for measuring shear-wave splitting above small earthquakes, Phys. Earth Planet. Inter. 159, 1–2, 1–14. https://www.sciencedirect.com/science/article/pii/S0031920106001853. [CrossRef] [Google Scholar]
- Li Z., Peng Z. (2017) Stress- and structure-induced anisotropy in Southern California from two decades of shear wave splitting measurements, Geophys. Res Lett. 44, 9607–9614. https://doi.org/10.1002/2017GL075163. [CrossRef] [Google Scholar]
- Kendall R.R., Kendall J.M. (1996) Shear-wave amplitude anomalies in south-central Wyoming, The Leading Edge 15, 8, 913–920. https://doi.org/10.1190/1.1437390. [CrossRef] [Google Scholar]
- Tichelaar B.W., Hatchell P.J. (1997) Inversion of 4-C borehole flexural waves to determine anisotropy in a fractured carbonate reservoir, Geophysics 62, 5, 1432. https://doi.org/10.1190/1.1444247. [CrossRef] [Google Scholar]
- Hake J.H., Gevers E.C.A., Van Der Kolk C.M., Tichelaar B.W. (1998) A shear experiment over the Natih field in Oman: pilot seismic and borehole data, Geophys. Prospect. 46, 617–646. https://doi.org/10.1046/j.1365-2478.1998.00111.x. [CrossRef] [Google Scholar]
- Hitchings V.H., Potters H. (2000) Production and Geological implications of the Natih 9C3D Seismic Survey, GeoArabia 5, 4, 511–524. https://doi.org/10.2113/geoarabia0504511. [CrossRef] [Google Scholar]
- Macbeth C., Crampin S. (1991) Comparison of signal processing techniques for estimating the effects of Anisotropy, Geophys. Prospect. 39, 3, 357–385. https://doi.org/10.1111/j.1365-2478.1991.tb00317.x. [CrossRef] [Google Scholar]
- Che X., Qiao W., Liu P., Ju X., Lu J. (2015) Identification of fractures in carbonates using sonic imaging log: Example from the central of East European Plain, J. Acoustic. Soc. Am. 137, 2403–2404. https://doi.org/10.1121/1.4920754. [CrossRef] [Google Scholar]
- Crampin S. (2001) Shear-wave anisotropy: a new window into the crack-critical rockmass, CSEG Record. 26, 7. https://csegrecorder.com/articles/view/shear-wave-anisotropy-a-new-window-into-the-crack-critical-rockmass. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.