Open Access
Issue
Sci. Tech. Energ. Transition
Volume 77, 2022
Article Number 15
Number of page(s) 36
DOI https://doi.org/10.2516/stet/2022011
Published online 13 July 2022
  • Ağbulut Ü., Ayyıldız M., Sarıdemir S. (2020) Prediction of performance, combustion and emission characteristics for a CI engine at varying injection pressures, Energy 197, 117257. [CrossRef] [Google Scholar]
  • Sarıkoç S., Örs İ., Ünalan S. (2020) An experimental study on energy-exergy analysis and sustainability index in a diesel engine with direct injection diesel-biodiesel-butanol fuel blends, fuel 268, 117321. [CrossRef] [Google Scholar]
  • Sarıdemir S., Ağbulut Ü. (2019) Combustion, performance, vibration and noise characteristics of cottonseed methyl ester–diesel blends fuelled engine, Biofuels 13, 2, 201–210. [Google Scholar]
  • Habibullah M., Masjuki H.H., Kalam M.A., Rahman S.A., Mofijur M., Mobarak H.M., Ashraful A.M. (2015) Potential of biodiesel as a renewable energy source in Bangladesh, Renew. Sust. Energ. Rev. 50, 819–834. [CrossRef] [Google Scholar]
  • Ağbulut Ü (2019) Turkey’s electricity generation problem and nuclear energy policy, Energ. Source Part A 41, 18, 2281–2298. [CrossRef] [Google Scholar]
  • Ağbulut Ü., Sarıdemir S., Albayrak S. (2019) Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends, J. Braz. Soc. Mech. Sci. Eng. 41, 9, 1–12. [CrossRef] [Google Scholar]
  • Kumar S., Dinesha P., Rosen M.A. (2019) Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive, Energy 185, 1163–1173. [CrossRef] [Google Scholar]
  • Uyumaz A. (2018) Combustion, performance and emission characteristics of a DI diesel engine fueled with mustard oil biodiesel fuel blends at different engine loads, Fuel 212, 256–267. [CrossRef] [Google Scholar]
  • Ağbulut Ü., Karagöz M., Sarıdemir S., Öztürk A. (2020) Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine, Fuel 270, 117521. [CrossRef] [Google Scholar]
  • Kalam M.A., Masjuki H.H., Jayed M.H., Liaquat A.M. (2011) Emission and performance characteristics of an indirect ignition diesel engine fuelled with waste cooking oil, Energy 36, 1, 397–402. [CrossRef] [Google Scholar]
  • Viswanathan K., Ashok B., Pugazhendhi A. (2020) Comprehensive study of engine characteristics of novel biodiesel from curry leaf (Murraya koenigii) oil in ceramic layered diesel engine, Fuel 280, 118586. [CrossRef] [Google Scholar]
  • Ashok B., Nanthagopal K., Chyuan O.H., Le P.T.K., Khanolkar K., Raje N., Raj A., Karthickeyand V., Tamilvanan A. (2020) Multi-functional fuel additive as a combustion catalyst for diesel and biodiesel in CI engine characteristics, Fuel 278, 118250. [CrossRef] [Google Scholar]
  • Tamilvanan A., Balamurugan K., Ashok B., Selvakumar P., Dhamotharan S., Bharathiraja M., Karthickeyan V. (2020) Effect of diethyl ether and ethanol as an oxygenated additive on Calophyllum inophyllum biodiesel in CI engine, Environ. Sci. Pollut. Res. 28, 33880–33898. [Google Scholar]
  • Karthickeyan V., Ashok B., Thiyagarajan S., Nanthagopal K., Geo V.E., Dhinesh B. (2019) Comparative analysis on the influence of antioxidants role with Pistacia khinjuk oil biodiesel to reduce emission in diesel engine, Heat Mass Transf. 56, 1275–1292. [Google Scholar]
  • Ong H.C., Chen W.H., Singh Y., Gan Y.Y., Chen C.Y., Show P.L. (2020) A state-of-the-art review on thermochemical conversion of biomass for biofuel production: A TG-FTIR approach, Energy Convers. Manag. 209, 112634. [CrossRef] [Google Scholar]
  • Goh B.H.H., Ong H.C., Cheah M.Y., Chen W.H., Yu K.L., Mahlia T.M.I. (2019) Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review, Renew. Sust. Energ. Rev. 107, 59–74. [CrossRef] [Google Scholar]
  • Vellaiyan S. (2020) Combustion, performance and emission evaluation of a diesel engine fueled with soybean biodiesel and its water blends, Energy 201, 117633. [CrossRef] [Google Scholar]
  • Bedir Ö., Doğan T.H. (2021) Comparison of catalytic activities of Ca-based catalysts from waste in biodiesel production, Energ. Source Part A 1–18. [CrossRef] [Google Scholar]
  • Atadashi I.M., Aroua M.K., Aziz A.A., Sulaiman N.M.N. (2013) The effects of catalysts in biodiesel production: A review, J. Ind. Eng. Chem. 19, 1, 14–26. [CrossRef] [Google Scholar]
  • Verma P., Sharma M.P., Dwivedi G. (2016) Impact of alcohol on biodiesel production and properties, Renew. Sust. Energ. Rev. 56, 319–333. [CrossRef] [Google Scholar]
  • Živković S., Veljković M. (2018) Environmental impacts the of production and use of biodiesel, Environ. Sci. Pollut. Res. 25, 1, 191–199. [CrossRef] [PubMed] [Google Scholar]
  • Rajasekar E., Selvi S. (2014) Review of combustion characteristics of CI engines fueled with biodiesel, Renew. Sust. Energ. Rev. 35, 390–399. [CrossRef] [Google Scholar]
  • Çaynak S., Gürü M., Biçer A., Keskin A., Içingür Y. (2009) Biodiesel production from pomace oil and improvement of its properties with synthetic manganese additive, Fuel 88, 3, 534–538. [CrossRef] [Google Scholar]
  • Agarwal A.K. (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines, Prog. Energy Combust. Sci. 33, 3, 233–271. [Google Scholar]
  • Canakci M., Erdil A., Arcaklioğlu E. (2006) Performance and exhaust emissions of a biodiesel engine, Appl. Energy 83, 6, 594–605. [CrossRef] [Google Scholar]
  • Mishra S., Anand K., Mehta P.S. (2016) Predicting the cetane number of biodiesel fuels from their fatty acid methyl ester composition, Energ. Fuels 30, 12, 10425–10434. [CrossRef] [Google Scholar]
  • Gharehghani A., Mirsalim M., Hosseini R. (2017) Effects of waste fish oil biodiesel on diesel engine combustion characteristics and emission, Renew. Energy 101, 930–936. [CrossRef] [Google Scholar]
  • Najafi G. (2018) Diesel engine combustion characteristics using nano-particles in biodiesel-diesel blends, Fuel 212, 668–678. [CrossRef] [Google Scholar]
  • Radhakrishnan S., Munuswamy D.B., Devarajan Y., Mahalingam A. (2019) Performance, emission and combustion study on neat biodiesel and water blends fuelled research diesel engine, Heat Mass Transf. 55, 4, 1229–1237. [CrossRef] [Google Scholar]
  • Park S.H., Kim H.J., Suh H.K., Lee C.S. (2009) Experimental and numerical analysis of spray-atomization characteristics of biodiesel fuel in various fuel and ambient temperatures conditions, Int. J. Heat Fluid Flow 30, 5, 960–970. [CrossRef] [Google Scholar]
  • Alptekin E., Canakci M. (2008) Determination of the density and the viscosities of biodiesel–diesel fuel blends, Renew. Energy 33, 12, 2623–2630. [CrossRef] [Google Scholar]
  • Ağbulut Ü., Gürel A.E., Sarıdemir S. (2021) Experimental investigation and prediction of performance and emission responses of a CI engine fuelled with different metal-oxide based nanoparticles–diesel blends using different machine learning algorithms, Energy 215, 119076. [CrossRef] [Google Scholar]
  • Jain S. (2019) The production of biodiesel using Karanja (Pongamia pinnata) and Jatropha (Jatropha curcas) Oil, in: Biomass, Biopolymer-Based Materials, and Bioenergy, Woodhead Publishing, pp. 397–408. [CrossRef] [Google Scholar]
  • Arumugam A., Ponnusami V. (2019) Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview, Renew. Energy. 131, 459–471. [CrossRef] [Google Scholar]
  • Hasni K., Ilham Z., Dharma S., Varman M. (2017) Optimization of biodiesel production from Brucea javanica seeds oil as novel non-edible feedstock using response surface methodology, Energy Convers. Manag. 149, 392–400. [CrossRef] [Google Scholar]
  • Muthukumaran C., Praniesh R., Navamani P., Swathi R., Sharmila G., Kumar N.M. (2017) Process optimization and kinetic modeling of biodiesel production using non-edible Madhuca indica oil, Fuel 195, 217–225. [CrossRef] [Google Scholar]
  • Munir M., Ahmad M., Rehan M., Saeed M., Lam S.S., Nizami A.S., Waseem A., Sultana S., Zafar M. (2021) Production of high quality biodiesel from novel non-edible Raphnus raphanistrum L. seed oil using copper modified montmorillonite clay catalyst, Environ. Res. 193, 110398. [CrossRef] [Google Scholar]
  • Fadhil A.B., Saleh L.A., Altamer D.H. (2020) Production of biodiesel from non-edible oil, wild mustard (Brassica Juncea L.) seed oil through cleaner routes, Energ. Source Part A 42, 15, 1831–1843. [CrossRef] [Google Scholar]
  • Yesilyurt M.K., Cesur C. (2020) Biodiesel synthesis from Styrax officinalis L. seed oil as a novel and potential non-edible feedstock: A parametric optimization study through the Taguchi technique, Fuel 265, 117025. [CrossRef] [Google Scholar]
  • Stamenković O.S., Djalović I.G., Kostić M.D., Mitrović P.M., Veljković V.B. (2018) Optimization and kinetic modeling of oil extraction from white mustard (Sinapis alba L.) seeds, Ind. Crops Prod. 121, 132–141. [CrossRef] [Google Scholar]
  • Aslan V., Eryilmaz T. (2020) Polynomial regression method for optimization of biodiesel production from black mustard (Brassica nigra L.) seed oil using methanol, ethanol, NaOH, and KOH, Energy 209, 118386. [CrossRef] [Google Scholar]
  • Onoji S.E., Iyuke S.E., Igbafe A.I., Daramola M.O. (2020) Rubber seed (Hevea brasiliensis) oil biodiesel emission profiles and engine performance characteristics using a TD202 diesel test engine, Biofuels 13, 4, 423–430. [Google Scholar]
  • Uyaroğlu A., Uyumaz A., Çelikten İ. (2018) Comparison of the combustion, performance, and emission characteristics of inedible Crambe abyssinica biodiesel and edible hazelnut, corn, soybean, sunflower, and canola biodiesels, Environ. Prog. Sustain. Energy 37, 4, 1438–1447. [CrossRef] [Google Scholar]
  • Ahmad M., Ullah K., Khan M.A., Zafar M., Tariq M., Ali S., Sultana S. (2011) Physicochemical analysis of hemp oil biodiesel: a promising non edible new source for bioenergy, Energ. Source Part A 33, 14, 1365–1374. [CrossRef] [Google Scholar]
  • John C.B., Raja S.A. (2020) Analysis of combustion, emission and performance attributes of hemp biodiesel on a compression ignition engine, World Rev. Sci. Technol. Sustain. Dev. 16, 2, 169–183. [CrossRef] [Google Scholar]
  • Mohammed M.N., Atabani A.E., Uguz G., Lay C.H., Kumar G., Al-Samaraae R.R. (2020) Characterization of hemp (Cannabis sativa L.) biodiesel blends with euro diesel, butanol and diethyl ether using FT-IR, UV-Vis, TGA and DSC techniques, Waste Biomass Valorize 11, 3, 1097–1113. [CrossRef] [Google Scholar]
  • Li S.Y., Stuart J.D., Li Y., Parnas R.S. (2010) The feasibility of converting Cannabis sativa L. oil into biodiesel, Bioresource Technol. 101, 21, 8457–8460. [CrossRef] [Google Scholar]
  • Gupta A.R., Jalan A.P., Rathod V.K. (2018) Solar energy as a process intensification tool for the biodiesel production from hempseed oil, Energy Convers. Manag. 171, 126–132. [CrossRef] [Google Scholar]
  • Stamenković O.S., Veličković A.V., Kostić M.D., Joković N.M., Rajković K.M., Milić P.S., Veljković V.B. (2015) Optimization of KOH-catalyzed methanolysis of hempseed oil, Energy Convers. Manag. 103, 235–243. [CrossRef] [Google Scholar]
  • Ravichandra D., Puli R.K., Chandramohan V.P., Geo V.E. (2019) Experimental analysis of Deccan hemp oil as a new energy feedstock for compression ignition engine, Int. J. Ambient. Energy 40, 6, 634–644. [CrossRef] [Google Scholar]
  • Jayaraman K., Babu G.N., Dhandapani G., Varuvel E.G. (2019) Effect of hydrogen addition on performance, emission, and combustion characteristics of Deccan hemp oil and its methyl ester–fuelled CI engine, Environ. Sci. Pollut. Res. 26, 9, 8685–8695. [CrossRef] [PubMed] [Google Scholar]
  • USDA (2020) Plant database, natural resources conservation service. Available at: https://plants.sc.egov.usda.gov/core/profile?symbol=CASA3 [Access Date: 04.03.2021]. [Google Scholar]
  • Ragit S.S., Mohapatra S.K., Gill P., Kundu K. (2012) Brown hemp methyl ester: transesterification process and evaluation of fuel properties, Biomass and Bioenerg. 41, 14–20. [CrossRef] [Google Scholar]
  • Ur Rehman M.S., Rashid N., Saif A., Mahmood T., Han J.-I. (2013) Potential of bioenergy production from industrial hemp (Cannabis sativa): Pakistan perspective, Renew. Sust. Energ. Rev. 18, 154–164. [CrossRef] [Google Scholar]
  • Johnson R. (2014) Hemp as an agricultural commodity, Library of Congress Washington DC Congressional Research Service, pp. 48. [Google Scholar]
  • Kiralan M., Gül V., Kara S.M. (2010) Fatty acid composition of hempseed oils from different locations in Turkey, Span. J. Agric. Res. 2, 385–390. [CrossRef] [Google Scholar]
  • Milano J., Ong H.C., Masjuki H.H., Silitonga A.S., Chen W.H., Kusumo F., Drahma S., Sebayang A.H. (2018) Optimization of biodiesel production by microwave irradiation-assisted transesterification for waste cooking oil-Calophyllum inophyllum oil via response surface methodology, Energy Convers, Manag. 158, 400–415. [CrossRef] [Google Scholar]
  • Asokan M.A., Kamesh S., Khan W. (2018) Performance, combustion and emission characteristics of diesel engine fuelled with papaya and watermelon seed oil biodiesel/diesel blends, Energy 145, 238–245. [CrossRef] [Google Scholar]
  • Silitonga A.S., Mahlia T.M.I., Ong H.C., Riayatsyah T.M.I., Kusumo F., Ibrahim H., Drahma S., Gumilang D. (2017) A comparative study of biodiesel production methods for Reutealis trisperma biodiesel, Energ. Source Part A 39, 20, 2006–2014. [CrossRef] [Google Scholar]
  • Prabu S.S., Asokan M.A., Prathiba S., Ahmed S., Puthean G. (2018) Effect of additives on performance, combustion and emission behavior of preheated palm oil/diesel blends in DI diesel engine, Renew. Energy 122, 196–205. [CrossRef] [Google Scholar]
  • Eryilmaz T., Yesilyurt M.K. (2016) Influence of blending ratio on the physicochemical properties of safflower oil methyl ester-safflower oil, safflower oil methyl ester-diesel and safflower oil-diesel, Renew. Energy 95, 233–247. [CrossRef] [Google Scholar]
  • Asokan M.A., Prabu S.S., Bade P.K.K., Nekkanti V.M., Gutta S.S.G. (2019) Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine, Energy 173, 883–892. [CrossRef] [Google Scholar]
  • Uyumaz A. (2020) Experimental evaluation of linseed oil biodiesel/diesel fuel blends on combustion, performance and emission characteristics in a DI diesel engine, Fuel 267, 117150. [CrossRef] [Google Scholar]
  • Venkanna B.K., Reddy C.V. (2009) Biodiesel production and optimization from Calophyllum inophyllum linn oil (honne oil) – A three stage method, Bioresource Technol. 100, 21, 5122–5125. [CrossRef] [Google Scholar]
  • Ramadhas A.S., Jayaraj S., Muraleedharan C. (2005) Biodiesel production from high FFA rubber seed oil, Fuel 84, 4, 335–340. [Google Scholar]
  • Prabu S.S., Asokan M.A., Roy R., Francis S., Sreelekh M.K. (2017) Performance, combustion and emission characteristics of diesel engine fuelled with waste cooking oil biodiesel/diesel blends with additives, Energy 122, 638–648. [CrossRef] [Google Scholar]
  • Ramadhas A.S., Jayaraj S., Muraleedharan C. (2005) Characterization and effect of using rubber seed oil as fuel in the compression ignition engines, Renew. Energy 30, 5, 795–803. [CrossRef] [Google Scholar]
  • How H.G., Masjuki H.H., Kalam M.A., Teoh Y.H. (2014) An investigation of the engine performance, emissions and combustion characteristics of coconut biodiesel in a high-pressure common-rail diesel engine, Energy 69, 749–759. [CrossRef] [Google Scholar]
  • Doğan B., Erol D., Yaman H., Kodanli E. (2017) The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis, Appl. Therm. Eng. 120, 433–443. [CrossRef] [Google Scholar]
  • Emiroğlu A.O., Şen M. (2018) Combustion, performance and exhaust emission characterizations of a diesel engine operating with a ternary blend (alcohol-biodiesel-diesel fuel), Appl. Therm. Eng. 133, 371–380. [CrossRef] [Google Scholar]
  • Erdoğan S., Balki M.K., Sayin C. (2019) The effect on the knock intensity of high viscosity biodiesel use in a DI diesel engine, Fuel 253, 1162–1167. [CrossRef] [Google Scholar]
  • Heywood J.B. (2018) Internal combustion engine fundamentals, McGraw-Hill Education. [Google Scholar]
  • Debnath B.K., Bora B.J., Sahoo N., Saha U.K. (2014) Influence of emulsified palm biodiesel as pilot fuel in a biogas run dual fuel diesel engine, J. Energ. Eng. 140, 3, A4014005. [CrossRef] [Google Scholar]
  • Bora B.J., Saha U.K. (2016) Experimental evaluation of a rice bran biodiesel–biogas run dual fuel diesel engine at varying compression ratios, Renew. Energy 87, 782–790. [CrossRef] [Google Scholar]
  • Bora B.J., Saha U.K., Chatterjee S., Veer V. (2014) Effect of compression ratio on performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas, Energy Convers. Manag. 87, 1000–1009. [Google Scholar]
  • Erdoğan S., Balki M.K., Sayin C. (2019) Combustion analysis of biodiesel derived from bone marrow in a diesel generator at low loads, Int. J. Automot. Technol. 8, 2, 76–82. [Google Scholar]
  • Soloiu V., Gaubert R., Moncada J., Wiley J., Williams J., Harp S., Ilie M., Molina G., Mothershed D. (2019) Reactivity controlled compression ignition and low temperature combustion of Fischer-Tropsch fuel blended with n-butanol, Renew. Energy 134, 1173–1189. [CrossRef] [Google Scholar]
  • Soloiu V., Moncada J.D., Gaubert R., Knowles A., Molina G., Ilie M., Harp S., Wiley J.T. (2018) Reactivity controlled compression ignition combustion and emissions using n-butanol and methyl oleate, Energy 165, 911–924. [CrossRef] [Google Scholar]
  • Wei L., Yao C., Han G., Pan W. (2016) Effects of methanol to diesel ratio and diesel injection timing on combustion, performance and emissions of a methanol port premixed diesel engine, Energy 95, 223–232. [CrossRef] [Google Scholar]
  • Vavra J., Bohac S.V., Manofsky L., Lavoie G., Assanis D. (2012) Knock in various combustion modes in a gasoline-fueled automotive engine, J. Eng. Gas. Turbine Power 134, 8. [CrossRef] [Google Scholar]
  • Merker G.P., Schwarz C., Teichmann R., (eds), (2011) Combustion engines development: mixture formation, combustion, emissions and simulation, Springer Science & Business Media. [Google Scholar]
  • Holman P. (2012) Experimental methods for engineers, 8th edn., McGraw-Hill, New York, USA. [Google Scholar]
  • Rajak U., Nashine P., Verma T.N. (2020) Effect of spirulina microalgae biodiesel enriched with diesel fuel on performance and emission characteristics of CI engine, Fuel 268, 117305. [Google Scholar]
  • Shrivastava P., Verma T.N., Pugazhendhi A. (2019) An experimental evaluation of engine performance and emisssion characteristics of CI engine operated with Roselle and Karanja biodiesel, Fuel 254, 115652. [CrossRef] [Google Scholar]
  • Rajak U., Verma T.N. (2018) Effect of emission from ethylic biodiesel of edible and non-edible vegetable oil, animal fats, waste oil and alcohol in CI engine, Energy Convers. Manag. 166, 704–718. [CrossRef] [Google Scholar]
  • Dhar A., Agarwal A.K. (2014) Performance, emissions and combustion characteristics of Karanja biodiesel in a transportation engine, Fuel 119, 70–80. [CrossRef] [Google Scholar]
  • Chauhan B.S., Kumar N., Cho H.M. (2012) A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends, Energy 37, 1, 616–622. [CrossRef] [Google Scholar]
  • Qi D.H., Chen H., Geng L.M., Bian Y.Z. (2010) Experimental studies on the combustion characteristics and performance of a direct injection engine fueled with biodiesel/diesel blends, Energy Convers. Manag. 51, 12, 2985–2992. [CrossRef] [Google Scholar]
  • Vedharaj S., Vallinayagam R., Yang W.M., Chou S.K., Chua K.J.E., Lee P.S. (2013) Experimental investigation of kapok (Ceiba pentandra) oil biodiesel as an alternate fuel for diesel engine, Energy Convers. Manag. 75, 773–779. [CrossRef] [Google Scholar]
  • Agarwal A.K., Dhar A. (2013) Experimental investigations of performance, emission and combustion characteristics of Karanja oil blends fuelled DICI engine, Renew. Energy 52, 283–291. [CrossRef] [Google Scholar]
  • Shrivastava P., Verma T.N. (2020) Effect of fuel injection pressure on the characteristics of CI engine fuelled with biodiesel from Roselle oil, Fuel 265, 117005. [CrossRef] [Google Scholar]
  • Rajak U., Verma T.N. (2020) Influence of combustion and emission characteristics on a compression ignition engine from a different generation of biodiesel, Eng. Sci. Technol. Int. J. 23, 1, 10–20. [Google Scholar]
  • Karmee S.K., Chadha A. (2005) Preparation of biodiesel from crude oil of Pongamia pinnata, Bioresource Technol. 96, 13, 1425–1429. [CrossRef] [Google Scholar]
  • Lakshmi Narayana Rao G., Durga Prasad B., Sampath S., Rajagopal K. (2007) Combustion analysis of diesel engine fueled with jatropha oil methyl ester-diesel blends, Int. J. Green Energy 4, 6, 645–658. [CrossRef] [Google Scholar]
  • Hoekman S.K., Robbins C. (2012) Review of the effects of biodiesel on NOx emissions, Fuel Process. Technol. 96, 237–249. [CrossRef] [Google Scholar]
  • Deepanraj B., Sankaranarayanan G., Senthilkumar N., Pugazhvadivu M. (2017) Influence of dimethoxymethane addition on performance, emission and combustion characteristics of the diesel engine, Int. J. Ambient. Energy 38, 6, 622–626. [CrossRef] [Google Scholar]
  • Rajak U., Verma T.N. (2019) A comparative analysis of engine characteristics from various biodiesels: Numerical study, Energy Convers. Manag. 180, 904–923. [CrossRef] [Google Scholar]
  • Dhinesh B., Lalvani J.I.J., Parthasarathy M., Annamalai K. (2016) An assessment on performance, emission and combustion characteristics of single cylinder diesel engine powered by Cymbopogon flexuosus biofuel, Energy Convers. Manag. 117, 466–474. [CrossRef] [Google Scholar]
  • Abedin M.J., Kalam M.A., Masjuki H.H., Sabri M.F.M., Rahman S.A., Sanjid A., Fattah I.R. (2016) Production of biodiesel from a non-edible source and study of its combustion, and emission characteristics: A comparative study with B5, Renew. Energy 88, 20–29. [CrossRef] [Google Scholar]
  • Bayındır H., Işık M.Z., Argunhan Z., Yücel H.L., Aydın H. (2017) Combustion, performance and emissions of a diesel power generator fueled with biodiesel-kerosene and biodiesel-kerosene-diesel blends, Energy 123, 241–251. [CrossRef] [Google Scholar]
  • Ramesh A., Ashok B., Nanthagopal K., Pathy M.R., Tambare A., Mali P., Phuke P., Patil S., Subbarao R. (2019) Influence of hexanol as additive with Calophyllum Inophyllum biodiesel for CI engine applications, Fuel 249, 472–485. [CrossRef] [Google Scholar]
  • Maurya R.K., Saxena M.R. (2018) Characterization of ringing intensity in a hydrogen-fueled HCCI engine, Int. J. Hydrog. Energy 43, 19, 9423–9437. [CrossRef] [Google Scholar]
  • Eng J.A. (2002) Characterization of pressure waves in HCCI combustion, (No. 2002-01-2859), SAE Technical Paper. [Google Scholar]
  • Uludamar E., Tosun E., Aydın K. (2016) Experimental and regression analysis of noise and vibration of a compression ignition engine fuelled with various biodiesels, Fuel 177, 326–333. [CrossRef] [Google Scholar]
  • Yesilyurt M.K. (2020) A detailed investigation on the performance, combustion, and exhaust emission characteristics of a diesel engine running on the blend of diesel fuel, biodiesel and 1-heptanol (C7 alcohol) as a next-generation higher alcohol, Fuel 275, 117893. [CrossRef] [Google Scholar]
  • Soloiu V., Knowles A., Moncada J., Simons E., Muinos M., Beyerl T. (2017) Investigations on gaseous emissions, sound and vibrations levels of a DI engine fueled with 100% cottonseed biodiesel (No. 2017-01-0700), SAE Technical Paper. [Google Scholar]
  • Özgür T. (2019) Performance, emission, energetic and exergetic analyses of a compression ignition engine fuelled with sunflower oil methyl esters, Int. J. Automot. Technol. 8, 2, 70–75. [Google Scholar]
  • Koç M., Sekmen Y., Topgül T., Yücesu H.S. (2009) The effects of ethanol–unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine, Renew. Energy 34, 10, 2101–2106. [CrossRef] [Google Scholar]
  • Varol Y., Öner C., Öztop H.F., Altun Ş. (2014) Comparison of methanol, ethanol, or n-butanol blending with unleaded gasoline on exhaust emissions of an SI engine, Energ. Source Part A 36, 9, 938–948. [CrossRef] [Google Scholar]
  • Damanik N., Ong H.C., Tong C.W., Mahlia T.M.I., Silitonga A.S. (2018) A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, Environ. Sci. Pollut. Res. 25, 16, 15307–15325. [CrossRef] [PubMed] [Google Scholar]
  • Silitonga A.S., Masjuki H.H., Ong H.C., Sebayang A.H., Dharma S., Kusumo F., Siswantoro J., Milano J., Daud K., Mahlia T.M.I., Wei-Hsin Chen, Sugiyanto B. (2018) Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine, Energy 159, 1075–1087. [CrossRef] [Google Scholar]
  • Masum B.M., Masjuki H.H., Kalam M.A., Palash S.M., Wakil M.A., Imtenan S. (2014) Tailoring the key fuel properties using different alcohols (C2–C6) and their evaluation in gasoline engine, Energy Convers. Manag. 88, 382–390. [CrossRef] [Google Scholar]
  • Zaharin M.S.M., Abdullah N.R., Masjuki H.H., Ali O.M., Najafi G., Yusaf T. (2018) Evaluation on physicochemical properties of iso-butanol additives in ethanol-gasoline blend on performance and emission characteristics of a spark-ignition engine, Appl. Therm. Eng. 144, 960–971. [CrossRef] [Google Scholar]
  • Gupta H.N. (2012) Fundamentals of internal combustion engines, PHI Learning Pvt., Ltd. [Google Scholar]
  • Özener O., Yüksek L., Ergenç A.T., Özkan M. (2014) Effects of soybean biodiesel on a DI diesel engine performance, emission and combustion characteristics, Fuel 115, 875–883. [CrossRef] [Google Scholar]
  • Nabi M.N., Rahman M.M., Akhter M.S. (2009) Biodiesel from cotton seed oil and its effect on engine performance and exhaust emissions, Appl. Therm. Eng. 29, 11–12, 2265–2270. [CrossRef] [Google Scholar]
  • Canakci M. (2005) Performance and emissions characteristics of biodiesel from soybean oil, P. I. Mech. Eng. D-J. Aut. 219, 7, 915–922. [CrossRef] [Google Scholar]
  • Aydın F., Öğüt H. (2017) Effects of using ethanol-biodiesel-diesel fuel in single cylinder diesel engine to engine performance and emissions, Renew. Energy 103, 688–694. [CrossRef] [Google Scholar]
  • Sharudin H., Abdullah N.R., Najafi G., Mamat R., Masjuki H.H. (2017) Investigation of the effects of iso-butanol additives on spark ignition engine fuelled with methanol-gasoline blends, Appl. Therm. Eng. 114, 593–600. [Google Scholar]
  • Pulkrabek W.W. (1997) Engineering fundamentals of the internal combustion engine, No. 621.43, Pearson New International Edition, Pearson Higher Ed.. [Google Scholar]
  • Enweremadu C.C., Rutto H.L. (2010) Combustion, emission and engine performance characteristics of used cooking oil biodiesel – A review, Renew. Sust. Energ. Rev. 14, 9, 2863–2873. [CrossRef] [Google Scholar]
  • Pinzi S., Rounce P., Herreros J.M., Tsolakis A., Dorado M.P. (2013) The effect of biodiesel fatty acid composition on combustion and diesel engine exhaust emissions, Fuel 104, 170–182. [CrossRef] [Google Scholar]
  • Balaji D., Govindarajan P., Venkatesan J. (2010) Emission and combustion characteristics of SI engine working under gasoline blended with ethanol oxygenated organic compounds, Am. J. Environ. Sci. 6, 6, 495. [CrossRef] [Google Scholar]
  • Sharma A., Murugan S. (2013) Investigation on the behaviour of a DI diesel engine fueled with Jatropha Methyl Ester (JME) and Tyre Pyrolysis Oil (TPO) blends, Fuel 108, 699–708. [CrossRef] [Google Scholar]
  • Mofijur M., Masjuki H.H., Kalam M.A., Atabani A.E. (2013) Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective, Energy 55, 879–887. [CrossRef] [Google Scholar]
  • Fattah I.R., Masjuki H.H., Kalam M.A., Wakil M.A., Ashraful A.M., Shahir S.A. (2014) Experimental investigation of performance and regulated emissions of a diesel engine with Calophyllum inophyllum biodiesel blends accompanied by oxidation inhibitors, Energy Convers. Manag. 83, 232–240. [CrossRef] [Google Scholar]
  • Ashok B., Nanthagopal K., Vignesh D.S. (2018) Calophyllum inophyllum methyl ester biodiesel blend as an alternate fuel for diesel engine applications, Alex. Eng. J. 57, 3, 1239–1247. [CrossRef] [Google Scholar]
  • Ashok B., Nanthagopal K., Senthil Kumar M., Ramasamy A., Patel D., Balasubramanian S., Balakrishnan S. (2019) An investigation on CI engine characteristics using pork lard methyl ester at various injection pressures and injection timings, Int. J. Green Energy 16, 11, 834–846. [CrossRef] [Google Scholar]
  • Feng R., Yang J., Zhang D., Deng B., Fu J., Liu J., Liu X. (2013) Experimental study on SI engine fuelled with butanol–gasoline blend and H2O addition, Energy Convers. Manag. 74, 192–200. [CrossRef] [Google Scholar]
  • Silitonga A.S., Hassan M.H., Ong H.C., Kusumo F. (2017) Analysis of the performance, emission and combustion characteristics of a turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends using kernel-based extreme learning machine, Environ. Sci. Pollut. Res. 24, 32, 25383–25405. [CrossRef] [PubMed] [Google Scholar]
  • Rahman S.A., Masjuki H.H., Kalam M.A., Abedin M.J., Sanjid A., Sajjad H. (2013) Production of palm and Calophyllum inophyllum based biodiesel and investigation of blend performance and exhaust emission in an unmodified diesel engine at high idling conditions, Energy Convers. Manag. 76, 362–367. [CrossRef] [Google Scholar]
  • Yesilyurt M.K., Eryilmaz T., Arslan M. (2018) A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/n-pentanol (C5 alcohol) fuel blends, Energy 165, 1332–1351. [Google Scholar]
  • Krishania N., Rajak U., Chaurasiya P.K., Singh T.S., Birru A.K., Verma T.N. (2020) Investigations of spirulina, waste cooking and animal fats blended biodiesel fuel on auto-ignition diesel engine performance, emission characteristics, Fuel 276, 118123. [CrossRef] [Google Scholar]
  • Elsanusi O.A., Roy M.M., Sidhu M.S. (2017) Experimental investigation on a diesel engine fueled by diesel-biodiesel blends and their emulsions at various engine operating conditions, Appl. Energy 203, 582–593. [CrossRef] [Google Scholar]
  • Jamuwa D.K., Sharma D., Soni S.L. (2016) Experimental investigation of performance, exhaust emission and combustion parameters of stationary compression ignition engine using ethanol fumigation in dual fuel mode, Energy Convers. Manag. 115, 221–231. [CrossRef] [Google Scholar]
  • Ong H.C., Masjuki H.H., Mahlia T.M.I., Silitonga A.S., Chong W.T., Leong K.Y. (2014) Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine, Energy Convers. Manag. 81, 30–40. [CrossRef] [Google Scholar]
  • Balusamy T., Marappan R. (2007) Performance evaluation of direct injection diesel engine with blends of Thevetia peruviana seed oil and diesel, J. Sci. Ind. Res. (India) 66, 12, 1035–1040. [Google Scholar]
  • Kandasamy K.T., Rakkiyanna G.M. (2011) Thevetia peruviana biodiesel emulsion used as a fuel in a single cylinder diesel engine reduces NOx and smoke, Thermal Sci. 15, 4, 1185–1191. [CrossRef] [Google Scholar]
  • Panwar N.L., Shrirame H.Y., Rathore N.S., Jindal S., Kurchania A.K. (2010) Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil, Appl. Therm. Eng. 30, 2–3, 245–249. [CrossRef] [Google Scholar]
  • Devan P.K., Mahalakshmi N.V. (2009) Study of the performance, emission and combustion characteristics of a diesel engine using poon oil-based fuels, Fuel Process. Technol. 90, 4, 513–519. [CrossRef] [Google Scholar]
  • Uyumaz A., Aydoğan B., Yılmaz E., Solmaz H., Aksoy F., Mutlu İ., İpci D., Calam A. (2020) Experimental investigation on the combustion, performance and exhaust emission characteristics of poppy oil biodiesel-diesel dual fuel combustion in a CI engine, Fuel 280, 118588. [CrossRef] [Google Scholar]
  • Das M., Sarkar M., Datta A., Santra A.K. (2018) An experimental study on the combustion, performance and emission characteristics of a diesel engine fuelled with diesel-castor oil biodiesel blends, Renew. Energy 119, 174–184. [CrossRef] [Google Scholar]
  • Tayari S., Abedi R., Tahvildari K. (2020) Experimental investigation on fuel properties and engine characteristics of biodiesel produced from Eruca sativa, SN Appl. Sci. 2, 1, 1–13. [Google Scholar]
  • Raman L.A., Deepanraj B., Rajakumar S., Sivasubramanian V. (2019) Experimental investigation on performance, combustion and emission analysis of a direct injection diesel engine fuelled with rapeseed oil biodiesel, Fuel 246, 69–74. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.