Numéro
Sci. Tech. Energ. Transition
Volume 80, 2025
Innovative Strategies and Technologies for Sustainable Renewable Energy and Low-Carbon Development
Numéro d'article 23
Nombre de pages 16
DOI https://doi.org/10.2516/stet/2024097
Publié en ligne 14 février 2025
  • Fan F.R., Tian Z.Q., Wang Z.L. (2012) Flexible triboelectric generator, Nano Energy 1, 2, 328–334. [CrossRef] [Google Scholar]
  • Wang C.J, Meng F., Fu Q., Fan C.H., Cui L. (2022) Research on wave energy harvesting technology of annular triboelectric nanogenerator based on multi-electrode structure, Micromachines 13, 10, 1619–1619. [CrossRef] [PubMed] [Google Scholar]
  • Zheng Y., Li X., Zheng M.L., Zi Y.L., Cheng S.B., Cui H.Z., Li X.Y. (2023) MoSe2 enhanced raindrop triboelectric nanogenerators and its energy conversion analysis, Adv. Funct. Mater. 34, 1–10. [Google Scholar]
  • Mai N.C., Ha T.L., Phu D.H., Truong T.H., Dinh M.T.N., La T.T.H., Bui V. (2021) Surface patterning of GO-S/PLA nanocomposite with the assistance of an ionic surfactant for high-performance triboelectric nanogenerator, Int. J. Energy Res. 45, 14, 20047–20056. [CrossRef] [Google Scholar]
  • Fan B.B., Liu G.X., Fu X.P., Wang Z. (2022) Composite film with hollow hierarchical silica/perfluoropolyether filler and surface etching for performance enhanced triboelectric Nanogenerators, Chem. Eng. J. 446, 3–13. [Google Scholar]
  • Nassim R., Somayeh F., Masoumeh K.K., Leyla S., Azam I., Sadegh S., Raheleh M., Daryoosh V. (2023) High-performance flexible and stretchable self-powered surface engineered PDMS-TiO2 nanocomposite-based humidity sensors driven by triboelectric nanogenerator with full sensing range, Sens. Actuat. B Chem. 1, 378–388. [Google Scholar]
  • Du Y., Zhang S.J., Cheng Z.X. (2024) Flexocatalysis of nanoscale titanium dioxide, Nano Energy 127, 109731–109741. [CrossRef] [Google Scholar]
  • Shee C., Banerjee S., Bairagi S. (2024) A critical review on polyvinylidene fluoride (PVDF)/zinc oxide (ZnO)-based piezoelectric and triboelectric nanogenerators, J. Phys. Energy 6, 3–13. [Google Scholar]
  • Kannan R.T, Roji S.S.S. (2023) Performance and emission characteristics of salviniaceae filiculoides aquatic fern oil and SiO2 nano additive biodiesel in Cl engine, Sci. Technol. Energy Transit. 78, 4, 10–20. [CrossRef] [Google Scholar]
  • He Z.K., Ma M., Xu X.C., Wang J.Y., Chen F. (2012) Fabrication of superhydro-phobic coating via a facile and versatile method based onnanoparticle aggregates, Appl. Surf. Sci. 258, 7, 2544–2550. [CrossRef] [Google Scholar]
  • Gong S.K., Wang X.W., Tang B.Z., Xiong Z.Y., Qi S., Chen J., Yu P., Guo H.Y. (2024) Achieving Self-reinforcing triboelectric-electromagnetic hybrid nanogenerator by magnetocaloric and magnetization effects of gadolinium, Adv. Mater. (Deerfield Beach, Fla.) 36, 26, 2402824–2402824. [CrossRef] [Google Scholar]
  • Hao Z., Yun T., Zhe C. (2024) Voltage control method for multi-energy system based on the coupling of renewable energy hydrogen production and storage, Sci. Technol. Energy Trans. 79, 60–71. [Google Scholar]
  • Hussain M.D, Dudem B., Kutsarov D.I., Silva S.R.P. (2024) Exploring charge regeneration effect in interdigitated array electrodes-based TENGs for a more than 100-fold enhanced power density, Nano Energy, 130, 110–112. [Google Scholar]
  • Zeliha M.A., Zeynep K., Eyup Y. (2023) One material-opposite triboelectrification: molecular engineering regulated triboelectrification on silica surface to enhance TENG efficiency, Molecules (Basel, Switzerland) 28, 15, 56–62. [Google Scholar]
  • He Y., Tian J., Peng W.B., Huang D.Y., Li F.P., He Y.N. (2023) On the contact electrification mechanism in semiconductor semiconductor case by vertical contact-separation triboelectric nanogenerator, Nanotechnology 34, 29, 5401–5411. [Google Scholar]
  • Tiwari M., Mishra D. (2024) Self-powered water-splitting using triboelectric nano-generators for green hydrogen production: Recent advancements and perspective, Int. J. Hydrogen Energy 76, 234–246. [CrossRef] [Google Scholar]
  • Guo X., Shao J.J., Willatzen M., Yang Y., Wang Z.L. (2022) Theoretical model and optimal output of a cylindrical triboelectric nanogenerator, Nano Energy 92, 106, 762–772. [Google Scholar]
  • Fan C.M., Shao J.J., Guo X., Willatzen M., Wang Z.L. (2023) Field-circuit coupling model of triboelectric Nanogenerators, Mater. Today Phys. 35, 101–124. [Google Scholar]
  • Zhang Q., Guo H.Y., Shen F. (2023) A predictive method for impedance estimation of triboelectric nanogenerators based on a gated recurrent unit model, Nano Energy 124, 109, 458. [Google Scholar]
  • Kamaruzaman D., Mustakim M.S.N., Subki A.R.S.A. (2024) Polystyrene waste-ZnO nanocomposite film for energy harvesting via hydrophobic triboelectric nanogenerator: Transforming waste into energy, Mater. Today Sustain. 26, 100, 726. [Google Scholar]
  • Ramenskaya L.M., Kudryakova N.O., Grishina E.P. (2023) Conformation features and interaction of pyrrolidinium-based ionic liquids immobilized with silicon dioxide: Infrared spectroscopy, J. Molecular Liq. 382, 122, 25–35. [Google Scholar]
  • Guilherme L.T., Roithová J. (2022) Unmasking the Iron-Oxo Bond of the [(Ligand)Fe-OIAr]2+/+ Complexes, J. Am. Society Mass Spectrom. 33, 9, 1636–1643. [CrossRef] [PubMed] [Google Scholar]
  • Jeong J., Ko J., Kim J., Lee J. (2024) Asymmetric voltage amplification using a capacitive load energy management circuit in a triboelectric nanogenerator, Discover Nano 19, 1–10. [CrossRef] [Google Scholar]
  • Yan W.J., Liu Y., Cao L.N.Y. (2022) Asymmetric-internal-capacitance-induced charge aggregation for the hot-surface triboelectric nanogenerator, ACS Appl. Mater. Interf. 14, 51, 56827–56835. [CrossRef] [PubMed] [Google Scholar]
  • Liang Y.X., Ma Z.R., Yu S.T. (2022) Preparation and property analysis of solid carbonate-oxide composite materials for an electrolyte used in low-temperature solid oxide fuel cell, Sci. Technol. Energy Trans. 77, 4–12. [Google Scholar]
  • Kumar S, Jha R.K, Sharma P, Goswami A (2024) Design and development of a horizontal contact separated (HCS) test setup for measuring the performance of triboelectric nanogenerator for sustainable energy harvesting application, Rev. Sci. Instrum. 95, 3, 035002–035015. [CrossRef] [PubMed] [Google Scholar]
  • Tilahun D.A., Muneer V., Avik B. (2022) Decentralized control of islanding/grid-connected hybrid DC/AC microgrid using interlinking converters, Sci. Technol. Energy Trans. 77, 22–32. [Google Scholar]
  • Wang J.Q., Bao G.W., Xie S.X., Chen X.W. (2023) A paradigm-shift self-powered optical sensing system enabled by the rotation driven instantaneous discharging triboelectric nanogenerator (RDID-TENG), Nano Energy 115, 108, 732–742. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.