Open Access
Numéro |
Sci. Tech. Energ. Transition
Volume 80, 2025
|
|
---|---|---|
Numéro d'article | 24 | |
Nombre de pages | 19 | |
DOI | https://doi.org/10.2516/stet/2024113 | |
Publié en ligne | 18 février 2025 |
- Solaun K., Cerdá E. (2019) Climate change impacts on renewable energy generation. a review of quantitative projections. Renew. Sustain. Energy Rev. 116, December, 109415. https://doi.org/10.1016/j.rser.2019.109415. [CrossRef] [Google Scholar]
- Gielen D., Boshell F., Saygin D., Bazilian M.D., Wagner N., Gorini R. (2019) The role of renewable energy in the global energy transformation. Energy Strat. Rev. 24, April, 38–50. https://doi.org/10.1016/j.esr.2019.01.006. [CrossRef] [Google Scholar]
- Bogdanov D., Ram M., Aghahosseini A., Gulagi A., Oyewo A.S., Child M., Caldera U., Sadovskaia K., Farfan J., Barbosa L., Fasihi M., Khalili S., Traber T., Breyer C. (2021) Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 227, July, 120467. https://doi.org/10.1016/j.energy.2021.120467. [CrossRef] [Google Scholar]
- IRENA (2019) Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/-/media/files/irena/agency/publication/2019/oct/irena_future_of_wind_2019.pdf. [Google Scholar]
- Kyriakopoulos G.L. (2021) Low carbon energy technologies in sustainable energy systems, Academic Press, Elsevier. https://doi.org/10.1016/C2019-0-04921-7. [Google Scholar]
- Nikitas G. (2020) A study on soil-structure interaction of offshore wind turbine foundations, University of Surrey. https://doi.org/10.15126/thesis.00853721. [Google Scholar]
- Thomsen K.E. (2014) Offshore wind: a comprehensive guide to successful offshore wind farm installation, 2nd Edn., Academic Press, Elsevier. https://doi.org/10.1016/C2012-0-07272-9. [Google Scholar]
- Nikitas G., Bhattacharya S, Vimalan N. (2020) Wind energy, Future Energy, 331–55. Elsevier. https://doi.org/10.1016/B978-0-08-102886-5.00016-5. [CrossRef] [Google Scholar]
- Hernandez M., Hadman M., Amiri M., Silva C., Estefen S., La Rovere E. (2021) Environmental impacts of offshore wind installation, operation and maintenance, and decommissioning activities: a case study of Brazil. Renew. Sustain. Energy Rev. 144, July, 110994. https://doi.org/10.1016/j.rser.2021.110994. [CrossRef] [Google Scholar]
- Letcher T.M. (2017) Wind energy engineering: A handbook for onshore and offshore wind turbines, Academic Press, Elsevier. [Google Scholar]
- GWEC (2019) Global Wind Statistics 2018. https://gwec.net/global-wind-report-2019/. [Google Scholar]
- Watson S., Moro A., Reis V., Baniotopoulos C. (2019) Future emerging technologies in the wind power sector: a European perspective. Renew. Sustain. Energy Rev. 113, October, 109270. https://doi.org/10.1016/j.rser.2019.109270. [CrossRef] [Google Scholar]
- Ha K., Kim J., Yu Y., Seo H. (2021) Structural modeling and failure assessment of spar-type substructure for 5 MW floating offshore wind turbine under extreme conditions in the east sea. Energies, 14, 20, 6571. https://doi.org/10.3390/en14206571. [CrossRef] [Google Scholar]
- Malhotra S. (2007) Design and construction considerations for offshore wind turbine foundations, in: Volume 5: Ocean Space Utilization; Polar and Arctic Sciences and Technology; The Robert Dean Symposium on Coastal and Ocean Engineering; Special Symposium on Offshore Renewable Energy, ASMEDC, pp. 635–647. https://doi.org/10.1115/OMAE2007-29761. [Google Scholar]
- Jahani K., Langlois R.G., Afagh F.F. (2022) Structural dynamics of offshore wind turbines: a review. Ocean Eng. 251, May, 111136. https://doi.org/10.1016/j.oceaneng.2022.111136. [CrossRef] [Google Scholar]
- Jiang Z. (2021) Installation of offshore wind turbines: a technical review. Renew. Sustain. Energy Rev. 139, April, 110576. https://doi.org/10.1016/j.rser.2020.110576. [CrossRef] [Google Scholar]
- Manzano-Agugliaro F., Sánchez-Calero M., Alcayde A., San-Antonio-Gómez C., Perea-Moreno A-J, Salmeron-Manzano E (2020) Wind turbines offshore foundations and connections to grid. Inventions 5, 1, 8. https://doi.org/10.3390/inventions5010008. [CrossRef] [Google Scholar]
- Hau E., von Renouard H. (2006) Wind turbines. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29284-5. [CrossRef] [Google Scholar]
- WindEurope (2019) Wind Energy in Europe 2018, https://windeurope.org/about-wind/statistics/european/wind-energy-in-europe-in-2019/. [Google Scholar]
- Ahn D., Shin S., Kim S., Kharoufi H., Kim H. (2017) Comparative evaluation of different offshore wind turbine installation vessels for Korean west–south wind farm. Int. J. Naval Architect. Ocean Eng. 9, 1, 45–54. https://doi.org/10.1016/j.ijnaoe.2016.07.004. [CrossRef] [Google Scholar]
- Díaz H., Guedes Soares C. (2020) Review of the current status, technology and future trends of offshore wind farms. Ocean Eng. 209, August, 107381. https://doi.org/10.1016/j.oceaneng.2020.107381. [CrossRef] [Google Scholar]
- 4C Offshore (2022) Global Offshore Wind Farm Database. https://www.4coffshore.com/windfarms/. [Google Scholar]
- Bourgoyne A.T., Young F.S. (1974) A multiple regression approach to optimal drilling and abnormal pressure detection. Soc. Pet. Eng. J. 14, 4, 371–384. https://doi.org/10.2118/4238-PA. [CrossRef] [Google Scholar]
- Bourgoyne A.T. Jr., Millheim K.K., Chenevert M.E., Young F.S. (1986) Applied drilling engineering, Vol. 1, Society of Petroleum Engineers Text Book Series. [CrossRef] [Google Scholar]
- Bingham M.G. (1965) A new approach to interpreting rock drillability, Oil and Gas Journal Series by Petroleum Publishing Co. [Google Scholar]
- Maurer W.C. (1962) The “Perfect – Cleaning” theory of rotary drilling. J. Petrol. Technol. 14, 11, 1270–1274. https://doi.org/10.2118/408-PA. [CrossRef] [Google Scholar]
- Paiaman A.M., Ghassem Al-Askari M.K., Salmani B., Al-Anazi B.D., Masihi M. (2009) Effect of drilling fluid properties on rate of penetration, Nafta 3, 129–134. [Google Scholar]
- Dolph J.R., Brown K.E. (1968) Effect of rotary speed and bit weight on penetration rate of a diamond microbit. J. Petrol. Technol. 20, 9, 915–916. [CrossRef] [Google Scholar]
- Gallle E., Woods B. (1963) Best constant weight and rotary speed for rotary rock bits. Drilling and Production Practice, API, 48–73. [Google Scholar]
- Eckel J.R. (1968) Microbit studies of the effect of fluid properties and hydraulics on drilling rate II, in: SPE 2244, SPE Annual Fall Meeting, Houston, 4 pp. https://doi.org/10.2118/2244-MS. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.