Numéro
Sci. Tech. Energ. Transition
Volume 80, 2025
Innovative Strategies and Technologies for Sustainable Renewable Energy and Low-Carbon Development
Numéro d'article 40
Nombre de pages 10
DOI https://doi.org/10.2516/stet/2025021
Publié en ligne 3 juin 2025
  • Zhang Y., Zhong Y., Lu S., Zhang Z., Tan D. (2022) A comprehensive review of the properties, performance, combustion, and emissions of the diesel engine fueled with different generations of biodiesel, Processes 10, 1178. [CrossRef] [Google Scholar]
  • Lv J., Wang S., Meng B. (2022) The effects of nano-additives added to diesel-biodiesel fuel blends on combustion and emission characteristics of diesel engine: a review, Energies 15, 3, 1032. [CrossRef] [Google Scholar]
  • Rajeswari K.T., Selvadas S.S.R. (2023) Performance and emission characteristics of salviniaceae filiculoides aquatic fern oil and SiO2 nano additive biodiesel in CI engine, Sci. Tech. Energ. Transition 78, 4, 1–10. [CrossRef] [Google Scholar]
  • Çalık A., Tosun E., Akar M.A., Özcanlı M. (2023) Combined effects of hydrogen and TiO2 nanoparticle additive on terebinth oil biodiesel operated diesel engine, Sci. Tech. Energ. Transition 78, 9. [CrossRef] [Google Scholar]
  • Arita S., Komariah L.N., Andalia L.N., Hadiah F., Ramayanti C. (2023) Taguchi experiment design for DES K2CO3 glycerol performance in RBDPO transesterification, Emerg. Sci. J. 7, 3, 917–927. [CrossRef] [Google Scholar]
  • Kota M., Madhavan V.R. (2024) Experimental and numerical analysis to enhance the thermodynamic properties and biofuel stability: Sapindus mukorossi, Energy Sources A Recovery Util. Environ. Eff. 46, 1, 13654–13666. [Google Scholar]
  • Ali S.A., Hunagund S., Hussain S.S., Bagwan A.H. (2021) The effect of nanoparticles dispersed in waste cooking oil (WCO) biodiesel on thermal performance characteristics of VCR engine, Mater. Today Proc. 43, 888–891. [CrossRef] [Google Scholar]
  • Zhang W., Yuan W., Zhang X., Coronado M. (2012) Predicting the dynamic and kinematic viscosities of biodiesel–diesel blends using mid- and near-infrared spectroscopy, Appl. Energy 98, 122–127. [CrossRef] [Google Scholar]
  • Baroutian S., Shahbaz K., Mjalli F.S., Hashim M.A., AlNashef I.M. (2012) Densities and viscosities of binary blends of methyl esters + ethyl esters and ternary blends of methyl esters + ethyl esters + diesel fuel from T = (293.15 to 358.15) K, J. Chem. Eng. Data 57, 5, 1387–1395. [CrossRef] [Google Scholar]
  • Gabriel R., Vieira W.T., Soletti J.I., Ribeiro L.M.O., Carvalho S.H.V. (2020) Empirical modeling of different viscosity and density behavior of biodiesel from chichá (Sterculia striata) with diesel versus temperature variation, J. King Saud Univ. Sci. 32, 1, 628–635. [CrossRef] [Google Scholar]
  • Gulum M., Bilgin A. (2019) Measurement and prediction of density and viscosity of different diesel-vegetable oil binary blends, Environ. Climate Technol. 23, 1, 214–228. [CrossRef] [Google Scholar]
  • Samuel O.D., Oreko B.U., Oyejide J.O., Idi S., Fayomi O.S.I. (2019) Experimental and empirical study of diesel and biodiesel produced from blend of fresh vegetable and waste vegetable oil on density, viscosity, sulphur content and acid value, J. Phy. Conf. Ser 1378, 4, 042024. [CrossRef] [Google Scholar]
  • Arifin Z., Khairunisa N., Krishtiawan B., Prasetyo S.D., Bangun W. B. (2023) Performance analysis of nanofluid-based photovoltaic thermal collector with different convection cooling flow, Civ. Eng. J. 9, 8, 1922–1935. [CrossRef] [Google Scholar]
  • Prasetyo S.D., Budiana E.P., Prabowo A.R., Arifin Z. (2023) Modeling finned thermal collector construction nanofluid-based Al2O3 to enhance photovoltaic performance, Civ. Eng. J. 9, 12, 2989–3007. [CrossRef] [Google Scholar]
  • Bousbaa H., Kaid N., Alqahtani S., Maatki C., Naima K., Menni Y., Kolsi L. (2024) Prediction and simulation of biodiesel combustion in diesel engines: evaluating physicochemical properties, performance, and emissions, Fire 7, 364. [CrossRef] [Google Scholar]
  • Ranjan A., Dawn S.S., Jayaprabakar J., Nirmala N., Saikiran K., Sriram S.S. (2018) Experimental investigation on effect of MgO nanoparticles on cold flow properties, performance, emission and combustion characteristics of waste cooking oil biodiesel, Fuel 220, 780–791. [CrossRef] [Google Scholar]
  • Arif M., Alalawy A.I., Zheng Y., Koutb M., Kareri T., Salama E., Li X. (2024) Artificial intelligence and machine learning models application in biodiesel optimization process and fuel properties prediction, Sustain. Energy Technol. Assessments 73, 104097. [Google Scholar]
  • Bukkarapu K.R., Krishnasamy A. (2024) Spectroscopy-based machine learning approach to predict engine fuel properties of biodiesel, SAE Int. J. Engines 17, 7, 871–881. [CrossRef] [Google Scholar]
  • Bhatt A.N., Shrivastava N. (2021) Application of artificial neural network for internal combustion engines: a state of the art review, Arch. Comput. Methods Eng. 29, 2, 897–919. [Google Scholar]
  • Valbuena G.D., Tuero A.G., Díez J., Rodríguez E., Battez A.H. (2024) Application of machine learning techniques to predict biodiesel iodine value, Energy 292, 130638. [CrossRef] [Google Scholar]
  • Bhanuteja S., Srinivas V., Moorthy C.V.K.N.S.N., Kumar S.J., Raju B.L.L. (2023) Prediction of thermophysical properties of hybrid nanofluids using machine learning algorithms, Int. J. Interact. Des. Manuf. 18, 9, 6559–6572. [Google Scholar]
  • Li N.H., Ali A., Hussein R.A., Singh N.S.S., Abdullaeva B., Ahmad Z., Salahshour S., Baghoolizadeh M., Pirmoradian M. (2025) Prediction of the thermophysical properties of Ag-reduced graphene oxide-water/ethylene-glycol hybrid nanofluids using different machine learning methods, Case Stud. Therm. Eng. 69, 106038. [CrossRef] [Google Scholar]
  • Ude C.N., Onukwuli D.O., Okey-Onyesolu F.C., Nnaji P.C., Okoye C.C., Uwaleke C.C. (2022) Prediction of some thermo-physical properties of biodiesel using ANFIS and ANN cum sensitivity analysis, Clean. Waste Syst. 2, 100006. [CrossRef] [Google Scholar]
  • Agu C.M., Ani K.A., Abiazieije P.O., Omeje J.A., Ekuma J.C., Umelo U.E., Omukwu O.H., Nwankwo E.D., Chinedu M.P. (2024) Biodiesel production from waste cat fish oil using heterogeneous catalyst from cat fish born: a viable waste management approach, and ANN modeling of biodiesel yield, Waste Manag. Bull. 1, 4, 172–181. [CrossRef] [Google Scholar]
  • Soudagar M.E.M., Shelare S., Marghade D., Belkhode P., Nur-E-Alam M., Kiong T.S., Ramesh S., Rajabi A., Venu H., Khan T.M.Y., Mujtaba M., Shahapurkar K., Kalam M., Fattah I.M.R. (2024) Optimizing IC engine efficiency: a comprehensive review on biodiesel, nanofluid, and the role of artificial intelligence and machine learning, Energy Convers. Manag. 307, 118337. [CrossRef] [Google Scholar]
  • Said Z., Sharma P., Sundar L.S., Afzal A., Li C. (2021) Synthesis, stability, thermophysical properties and AI approach for predictive modelling of Fe3O4 coated MWCNT hybrid nanofluids, J. Mol. Liq. 340, 117291. [CrossRef] [Google Scholar]
  • Kulkarni M.G., Dalai A.K. (2006) Waste cooking oil – an economical source for biodiesel: a review, Ind. Eng. Chem. Res 45, 9, 2901–2913. [CrossRef] [Google Scholar]
  • Hussain S.S., Ali S.A., Bagwan A.H., Husain D., Ahmad A. (2023) Prediction of CI Engine emissions fueled with multiwalled carbon nanotube-doped waste cooking oil biodiesel using multilayer neural network, J. Nanomater 2023, 1–9. [CrossRef] [Google Scholar]
  • Hosseini S.H., Taghizadeh-Alisaraei A., Ghobadian B., Abbaszadeh-Mayvan A. (2017) Performance and emission characteristics of a CI engine fuelled with carbon nanotubes and diesel-biodiesel blends, Renew. Energy 111, 201–213. [CrossRef] [Google Scholar]
  • Ruan B., Jacobi A.M. (2012) Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions, Nanoscale Res. Lett. 7, 1. [CrossRef] [Google Scholar]
  • Zhang Z., Lu Y., Wang Y., Yu X., Smallbone A., Dong C., Roskilly A.P. (2019) Comparative study of using multi-wall carbon nanotube and two different sizes of cerium oxide nanopowders as fuel additives under various diesel engine conditions, Fuel 256, 115904. [CrossRef] [Google Scholar]
  • Nørgaard M., Ravn O., Poulsen N.L., Hansen L.K. (2000) Neural networks for modelling and control of dynamic systems, Springer, London. ISBN 1-85233-227-1. [CrossRef] [Google Scholar]
  • Haykins S. (2002) Neural networks: a comprehensive foundation, Pearson Education Inc, Singapore, ISBN 81-7808-300-0. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.