Numéro |
Sci. Tech. Energ. Transition
Volume 79, 2024
Emerging Advances in Hybrid Renewable Energy Systems and Integration
|
|
---|---|---|
Numéro d'article | 82 | |
Nombre de pages | 20 | |
DOI | https://doi.org/10.2516/stet/2024076 | |
Publié en ligne | 15 octobre 2024 |
- Sartzetakis I., Soumplis P., Pantazopoulos P., Katsaros K.V., Sourlas V., Varvarigos E.M. (2022) Resource allocation for distributed machine learning at the edge-cloud continuum, in: ICC 2022-IEEE International Conference on Communications, Seoul, South Korea, May 2022, pp. 5017–5022. [Google Scholar]
- Marozzo F., Orsino A., Talia D., Trunfio P. (2023) Scaling machine learning at the edge-cloud: a distributed computing perspective, in: 19th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT), June 2023, Coral Bay, Pafos, Cyprus, IEEE, pp. 761–767. [Google Scholar]
- Patel Y.S., Townend P., Singh A., Östberg P.O. (2024) Modeling the Green Cloud Continuum: integrating energy considerations into Cloud–Edge models, Cluster Comput. 27, 4095–4125. [CrossRef] [Google Scholar]
- Zhang G., Zhang S., Zhang W., Shen Z., Wang L. (2020) Distributed energy management for multiple data centers with renewable resources and energy storages, IEEE Trans. Cloud Comput. 10, 4, 2469–2480. [Google Scholar]
- Mahbod M.H.B., Chng C.B., Lee P.S., Chui C.K. (2022) Energy saving evaluation of an energy efficient data center using a model-free reinforcement learning approach, Appl. Energy 322, 119392. [CrossRef] [Google Scholar]
- Ren C., Wang D., Urgaonkar B., Sivasubramaniam A. (2012) Carbon-aware energy capacity planning for datacenters, in: 2012 IEEE 20th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, August 2012, Arlington, Virginia, pp. 391–400. [Google Scholar]
- Busmachiu S. (2023) The energy consumption of data centers environmental concerns, Accessed January 16, 2024, available at: https://utilitiesone.com/the-energy-consumption-of-data-centers-environmental-concerns. [Google Scholar]
- Vidal J. (2017) Tsunami of data could consume one fifth of global electricity by 2025. Available at: http://t.cn/EMNGBNm. [Accessed January 17, 2024]. [Google Scholar]
- Gandhi A., Harchol-Balter M., Das R., Lefurgy C. (2009) Optimal power allocation in server farms, ACM SIGMETRICS Perform. Eval. Rev. 37, 1, 157–168. [CrossRef] [Google Scholar]
- Mao H., Schwarzkopf M., Venkatakrishnan S.B., Meng Z., Alizadeh M. (2019) Learning scheduling algorithms for data processing clusters, in: Proceedings of the ACM special interest group on data communication, August 2019, Beijing, China, pp. 391–400. [Google Scholar]
- Elmougy S., Sarhan S., Joundy M. (2017) A novel hybrid of Shortest job first and round Robin with dynamic variable quantum time task scheduling technique, J. Cloud Comput. 6, 1–12. [CrossRef] [Google Scholar]
- Bosker B. (2010) Google buys 20 years’ worth of wind energy to power data centers. Accessed January 17, 2024, available at: https://www.huffpost.com/entry/google-wind-farm-purchase_n_653146. [Google Scholar]
- Kamiya G. (2019) Data centres and energy – from global headlines to local headaches. Available at: Accessed January 18, 2024. https://www.iea.org/commentaries/data-centres-and-energy-from-global-headlines-to-local-headaches. [Google Scholar]
- Apple (2018) Apple now globally powered by 100 percent renewable energy, Accessed January 17, 2024, available at: https://www.apple.com/hk/en/newsroom/2018/04/apple-now-globally-powered-by-100-percent-renewable-energy/. [Google Scholar]
- Xu D., Xiang S., Bai Z., Wei J., Gao M. (2023) Optimal multi-energy portfolio towards zero carbon data center buildings in the presence of proactive demand response programs, Appl. Energy 350, 121806. [CrossRef] [Google Scholar]
- Xu M., Buyya R. (2020) Managing renewable energy and carbon footprint in multi-cloud computing environments, J. Parallel Distrib. Comput. 135, 191–202. [CrossRef] [Google Scholar]
- Wu C.M., Chang R.S., Chan H.Y. (2014) A green energy-efficient scheduling algorithm using the DVFS technique for cloud datacenters, Future Gener. Comput. Syst. 37, 141–147. [CrossRef] [Google Scholar]
- Chen H., Caramanis M.C., Coskun A.K. (2014) Reducing the data center electricity costs through participation in smart grid programs, in: International green computing conference, November 2014, Dallas, Texas, pp. 1–10. [Google Scholar]
- Wierman A., Andrew L.L., Tang A. (2009) Power-aware speed scaling in processor sharing systems, in: IEEE INFOCOM 2009, April 2009, Rio de Janeiro, Brazil, pp. 2007–2015. [Google Scholar]
- Verma A., Pedrosa L., Korupolu M., Oppenheimer D., Tune E., Wilkes J. (2015) Large-scale cluster management at Google with Borg, in: Proceedings of the 10th European Conference on Computer Systems, April 2015, Bordeaux, France, pp. 1–17. [MathSciNet] [Google Scholar]
- Vavilapalli V.K., Murthy A.C., Douglas C., Agarwal S., Konar M., Evans R., Graves T., Lowe J., Shah H., Seth S., Saha B., Curino C., O’Malley O., Radia S., Reed B., Baldeschwieler E. (2013) Apache hadoop yarn: Yet another resource negotiator, in: Proceedings of the 4th annual Symposium on Cloud Computing, October 2013, Santa Clara, California, pp. 1–16. [Google Scholar]
- Regaieg R., Koubàa M., Ales Z., Aguili T. (2021) Multi-objective optimization for VM placement in homogeneous and heterogeneous cloud service provider data centers, Computing 103, 1255–1279. [CrossRef] [MathSciNet] [Google Scholar]
- Khoshkholghi M.A., Derahman M.N., Abdullah A., Subramaniam S., Othman M. (2017) Energy-efficient algorithms for dynamic virtual machine consolidation in cloud data centers, IEEE Access 5, 10709–10722. [CrossRef] [Google Scholar]
- Liu W., Yan Y., Sun Y., Mao H., Cheng M., Wang P., Ding Z. (2023) Online job scheduling scheme for low-carbon data center operation: An information and energy nexus perspective, Appl. Energy 338, 120918. [CrossRef] [Google Scholar]
- Wu Q., Ishikawa F., Zhu Q., Xia Y. (2016) Energy and migration cost-aware dynamic virtual machine consolidation in heterogeneous cloud datacenters, IEEE Trans. Serv. Comput. 12, 4, 550–563. [Google Scholar]
- Khodayarseresht E., Shameli-Sendi A. (2023) A multi-objective cloud energy optimizer algorithm for federated environments, J. Parallel Distrib. Comput. 174, 81–99. [CrossRef] [Google Scholar]
- Wang P., Liu W., Cheng M., Ding Z., Wang Y. (2022) Electricity and carbon-aware task scheduling in geo-distributed internet data centers, in: 2022 IEEE/IAS Industrial and Commercial Power System Asia (ICPS Asia), July 2022, Shanghai, China, pp. 1416–1421. [Google Scholar]
- Zhao D., Zhou J. (2022) An energy and carbon-aware algorithm for renewable energy usage maximization in distributed cloud data centers, J. Parallel Distrib. Comput. 165, 156–166. [CrossRef] [Google Scholar]
- Gu C., Fan L., Wu W., Huang H., Jia X. (2018) Greening cloud data centers in an economical way by energy trading with power grid, Future Gener. Comput. Syst. 78, 89–101. [CrossRef] [Google Scholar]
- Zhang Y., Wang Y., Wang X. (2011) Greenware: Greening cloud-scale data centers to maximize the use of renewable energy, in: ACM/IFIP/USENIX 12th International Middleware Conference, December 12–16, 2011, Lisbon, Portugal, pp. 143–164. [CrossRef] [Google Scholar]
- Khosravi A., Nadjaran Toosi A., Buyya R. (2017) Online virtual machine migration for renewable energy usage maximization in geographically distributed cloud data centers, Concurr. Comput. Pract. Exp. 29, 18, e4125. [CrossRef] [Google Scholar]
- Deng W., Liu F., Jin H., Li B., Li D. (2014) Harnessing renewable energy in cloud datacenters: opportunities and challenges, IEEE Netw. 28, 1, 48–55. [CrossRef] [MathSciNet] [Google Scholar]
- Aslam S., Aslam S., Herodotou H., Mohsin S.M., Aurangzeb K. (2020) Towards energy efficiency and power trading exploiting renewable energy in cloud data centers, in: 2019 International Conference on Advances in the Emerging Computing Technologies (AECT), February 2020, pp. 1–6. [Google Scholar]
- Windfinder (2024) Wind and temperature data. Accessed January 8, 2024, available at: https://www.windfinder.com/.. [Google Scholar]
- Solcast (2024) Irradiance data. Accessed January 8, 2024, available at: https://toolkit.solcast.com.au/world-api . [Google Scholar]
- Li Y., Wang Y., Yin B., Guan L. (2012) An online power metering model for cloud environment, in: 2012 IEEE 11th International Symposium on Network Computing and Applications, August 2012, Massachusetts, Cambridge, pp. 175–180. [Google Scholar]
- Fan X., Weber W.D., Barroso L.A. (2007) Power provisioning for a warehouse-sized computer, ACM SIGARCH Comput. Architect. News 35, 2, 13–23. [CrossRef] [Google Scholar]
- TW Solar (2024) 66HS605-625 W Model PV Panels. Accessed January 2, 2024, available at: https://www.tw-solar.com/module.html. [Google Scholar]
- Dong Z., Zhuang W., Rojas-Cessa R. (2014) Energy-aware scheduling schemes for cloud data centers on Google trace data, in: 2014 IEEE Online Conference on Green Communications (OnlineGreenComm), November 2014, pp. 1–6. [Google Scholar]
- Google (2024) Google data center locations. Accessed January 4, 2024, available at: https://www.google.com/intl/zh-CN/about/datacenters/locations/. [Google Scholar]
- Google (2024) Google maps. Accessed January 4, 2024, available at: https://www.google.com/maps. [Google Scholar]
- Spec. (2024) SpecPower. Accessed January 10, 2024, available at: https://www.spec.org/benchmarks.html#power. [Google Scholar]
- Parallel Workloads Archive (2013) The metacentrum 2 log. Accessed January 5, 2024, available at: https://www.cs.huji.ac.il/labs/parallel/workload/l_metacentrum2/index.html. [Google Scholar]
- Weide (2024) DLK-10KW Wind Turbine, Accessed January 2, 2024, available at: http://weidewind.com/list_24/31.html. [Google Scholar]
- Engie Resources (2024) Market-data. Accessed January 10, 2024, available at https://www.engieresources.com/market-data. [Google Scholar]
- Electricity Maps (2024) Carbon intensity. Accessed January 10, 2024, available at: https://app.electricitymaps.com/zone/US-NW-PACE. [Google Scholar]
- Alibaba (2019) PUE of Alibaba cloud green data center. Accessed January 12, 2024, available at: https://developer.aliyun.com/article/691750. [Google Scholar]
- Han O., Ding T., Yang M., Jia W., He X., Ma Z. (2024) A novel 4-level joint optimal dispatch for demand response of data centers with district autonomy realization, Appl. Energy 358, 122590. [CrossRef] [Google Scholar]
- Goiri Í., Le K., Haque M.E., Beauchea R., Nguyen T.D., Guitart J., Bianchini R. (2011) Greenslot: scheduling energy consumption in green datacenters, in: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, November 2011, Seattle, Washington, pp. 1–11. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.