Numéro
Sci. Tech. Energ. Transition
Volume 77, 2022
Dossier LES4ECE’21: LES for Energy Conversion in Electric and Combustion Engines, 2021
Numéro d'article 20
Nombre de pages 16
DOI https://doi.org/10.2516/stet/2022017
Publié en ligne 25 octobre 2022
  • Yugo M., Gordillo V., Shafiei E., Megaritis A. (2021) A look into the life cycle assessment of passenger cars running on advanced fuels, in: Proceedings of the SIA Powertrains & Power Electronics Conference, Paris, France, pp. 9–10. [Google Scholar]
  • Nagasawa T., Okura Y., Yamada R., Sato S., Kosaka H., Yokomori T., Iida N. (2021) Thermal efficiency improvement of super-lean burn spark ignition engine by stratified water insulation on piston top surface, Int. J. Engine Res. 22, 5, 1421–1439. [CrossRef] [Google Scholar]
  • Wang J., Duan X., Liu Y., Wang W., Liu J., Lai M.-C., Li Y., Guo G. (2020) Numerical investigation of water injection quantity and water injection timing on the thermodynamics, combustion and emissions in a hydrogen enriched lean-burn natural gas SI engine, Int. J. Hydrogen Energy 45, 35, 17935–17952. [CrossRef] [Google Scholar]
  • Benoit O., Truffin K., Jay S., van Oijen J., Drouvin Y., Kayashima T., Adomeit P., Angelberger C. (2022) Development of a Large-Eddy Simulation methodology for the analysis of cycle-to-cycle combustion variability of a lean burn engine, Flow Turbul. Combust. 108, 2, 559–598. [CrossRef] [Google Scholar]
  • Enaux B., Granet V., Vermorel O., Lacour C., Pera C., Angelberger C., Poinsot T. (2011) LES study of cycle-to-cycle variations in a spark ignition engine, Proc. Combust. Inst. 33, 2, 3115–3122. [Google Scholar]
  • Truffin K., Angelberger C., Richard S., Pera C. (2015) Using large-eddy simulation and multivariate analysis to understand the sources of combustion cyclic variability in a spark-ignition engine, Combust. Flame 162, 12, 4371–4390. [CrossRef] [Google Scholar]
  • Vermorel O., Richard S., Colin O., Angelberger C., Benkenida A., Veynante D. (2009) Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES, Combust. Flame 156, 8, 1525–1541. [CrossRef] [Google Scholar]
  • Duva B.C., Chance L.E., Toulson E. (2020) Dilution effect of different combustion residuals on laminar burning velocities and burned gas Markstein lengths of premixed methane/air mixtures at elevated temperature, Fuel 267, 117153. [CrossRef] [Google Scholar]
  • Benoit O., Luszcz P., Drouvin Y., Kayashima T., Adomeit P., Brunn A., Jay S., Truffin K., Angelberger C. (2019) Study of ignition processes of a lean burn engine using large-Eddy simulation. Technical report, SAE Technical Paper. [Google Scholar]
  • Sadeghi M., Truffin K., Peterson B., Böhm B., Jay S. (2021) Development and application of Bivariate 2D-EMD for the analysis of instantaneous flow structures and cycle-to-cycle variations of in-cylinder flow, Flow Turbul. Combust. 106, 1, 231–259. [CrossRef] [Google Scholar]
  • Buhl S., Gleiss F., Köhler M., Hartmann F., Messig D., Brücker C., Hasse C. (2017) A combined numerical and experimental study of the 3D tumble structure and piston boundary layer development during the intake stroke of a gasoline engine, Flow Turbul. Combust. 98, 2, 579–600. [Google Scholar]
  • Luszcz P., Takeuchi K., Pfeilmaier P., Gerhardt M., Adomeit P., Brunn A., Kupiek C., Franzke B. (2018) Homogeneous lean burn engine combustion system development – concept study, in: 18th Stuttgart International Symposium-Automotive and Engine Technology, Springer Vieweg, Wiesbaden, pp. 205–224. [CrossRef] [Google Scholar]
  • Senecal P. (2017) Converge (v2.4), Convergent Science Inc., Madison, WI. [Google Scholar]
  • Germano M., Piomelli U., Moin P., Cabot W.H. (1991) A dynamic subgrid-scale Eddy viscosity model, Phys. Fluids A Fluid Dyn. 3, 7, 1760–1765. [CrossRef] [Google Scholar]
  • Senecal P.K., Pomraning E., Richards K.J., Briggs T.E., Choi C.Y., McDavid R.M., Patterson M.A. (2003) Multi-dimensional modeling of direct-injection diesel spray liquid length and flame lift-off length using CFD and parallel detailed chemistry, in: SAE Transactions, pp. 1331–1351. [Google Scholar]
  • Frössling N. (1938) Gerlands beitr, Geophysics 52, 170–175. [Google Scholar]
  • Richard S., Colin O., Vermorel O., Benkenida A., Angelberger C., Veynante D. (2007) Towards large Eddy simulation of combustion in spark ignition engines, Proc. Combust. Inst. 31, 2, 3059–3066. [CrossRef] [Google Scholar]
  • Colin O., Truffin K. (2011) A spark ignition model for large eddy simulation based on an FSD transport equation (ISSIM-LES), Proc. Combust. Inst. 33, 2, 3097–3104. [CrossRef] [Google Scholar]
  • Colin O., Chevillard S., Bohbot J., Senecal P., Pomraning E., Wang M. (2018) Development of a Species-Based Extended Coherent Flamelet Model (SB-ECFM) for Gasoline Direct Injection engine (GDI) simulations, in: Internal Combustion Engine Division Fall Technical Conference, Vol. 51999, American Society of Mechanical Engineers, p. V002T06A016. [Google Scholar]
  • Colin O., Benkenida A., Angelberger C. (2003) 3D modeling of mixing, ignition and combustion phenomena in highly stratified gasoline engines, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 58, 1, 47–62. [CrossRef] [Google Scholar]
  • Hawkes E.R., Cant R.S. (2000) A flame surface density approach to large-Eddy simulation of premixed turbulent combustion, Proc. Combust. Inst. 28, 1, 51–58. [CrossRef] [Google Scholar]
  • Bougrine S., Richard S., Colin O., Veynante D. (2014) Fuel composition effects on flame stretch in turbulent premixed combustion: Numerical analysis of flame-vortex interaction and formulation of a new efficiency function, Flow Turbul. Combust. 93, 2, 259–281. [CrossRef] [Google Scholar]
  • Robert A., Richard S., Colin O., Martinez L., De Francqueville L. (2015) LES prediction and analysis of knocking combustion in a spark ignition engine, Proc. Combust. Inst. 35, 3, 2941–2948. [CrossRef] [Google Scholar]
  • Bounaceur R., Herbinet O., Fournet R., Glaude P.-A., Battin-Leclerc F., Pires Da Cruz A., Yahyaoui M., Truffin K., Moreac G. (2010) Modeling the laminar flame speed of natural gas and gasoline surrogates. Technical Report, SAE Technical Paper. [Google Scholar]
  • Poinsot T., Veynante D. (2005) Theoretical and numerical combustion, RT Edwards Inc. [Google Scholar]
  • Granet V., Vermorel O., Lacour C., Enaux B., Dugué V., Poinsot T. (2012) Large-Eddy simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine, Combust. Flame 159, 4, 1562–1575. [CrossRef] [Google Scholar]
  • Ameen M.M., Yang X., Kuo T.-W., Som S. (2017) Parallel methodology to capture cyclic variability in motored engines, Int. J. Engine Res. 18, 4, 366–377. [CrossRef] [Google Scholar]
  • Matekunas F.A. (1983) Modes and measures of cyclic combustion variability, in: SAE Transactions, pp. 1139–1156. [Google Scholar]
  • Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., Yen N.-C., Tung C.C., Liu H.H. (1998) The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 454, 1971, 903–995. [CrossRef] [MathSciNet] [Google Scholar]
  • Tanaka T., Mandic D.P. (2007) Complex empirical mode decomposition, IEEE Signal Proc. Lett. 14, 2, 101–104. [CrossRef] [Google Scholar]
  • Altaf M.U.B., Gautama T., Tanaka T., Mandic D.P. (2007) Rotation invariant complex empirical mode decomposition, in: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07, Vol. 3, IEEE, p. III–1009. [Google Scholar]
  • Rilling G., Flandrin P., Goncalves P., Lilly J.M. (2007) Bivariate empirical mode decomposition, IEEE Signal Proc. Lett. 14, 12, 936–939. [CrossRef] [Google Scholar]
  • Ur Rehman N., Mandic D.P. (2009) Empirical mode decomposition for trivariate signals, IEEE Trans. Signal Proc. 58, 3, 1059–1068. [Google Scholar]
  • Ur Rehman N., Mandic D.P. (2011) Filter bank property of multivariate empirical mode decomposition, IEEE Trans. Signal Proc. 59, 5, 2421–2426. [CrossRef] [Google Scholar]
  • Ur Rehman N., Park C., Huang N.E., Mandic D.P. (2013) EMD Via MEMD: Multivariate noise-aided computation of standard EMD, Adv. Adapt. Data Anal. 5, 2, 1350007. [CrossRef] [MathSciNet] [Google Scholar]
  • Hemakom A., Goverdovsky V., Looney D., Mandic D.P. (2016) Adaptive-projection intrinsically transformed multivariate empirical mode decomposition in cooperative brain–computer interface applications, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 374, 2065, 20150199. [CrossRef] [PubMed] [Google Scholar]
  • Sadeghi M., Foucher F., Abed-Meraim K., Mounam-Rousselle C. (2019) Bivariate 2D empirical mode decomposition for analyzing instantaneous turbulent velocity field in unsteady flows, Exp. Fluids 60, 8, 1–26. [CrossRef] [Google Scholar]
  • Fogleman M., Lumley J., Rempfer D., Haworth D. (2004) Application of the proper orthogonal decomposition to datasets of internal combustion engine flows, J. Turbul. 5, 1, 023. [CrossRef] [Google Scholar]
  • Voisine M., Thomas L., Borée J., Rey P. (2011) Spatio-temporal structure and cycle to cycle variations of an in-cylinder tumbling flow, Exp. Fluids 50, 5, 1393–1407. [CrossRef] [Google Scholar]
  • Abraham P., Liu K., Haworth D., Reuss D., Sick V. (2014) Evaluating Large-Eddy Simulation (LES) and high-speed Particle Image Velocimetry (PIV) with phase-invariant Proper Orthogonal Decomposition (POD), Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 69, 1, 41–59. [CrossRef] [Google Scholar]
  • Cao J., Ma Z., Li X., Xu M. (2019) 3d proper orthogonal decomposition analysis of engine in-cylinder velocity fields, Meas. Sci. Technol. 30, 8, 085304. [CrossRef] [Google Scholar]
  • Rulli F., Fontanesi S., d’Adamo A., Berni F. (2021) A critical review of flow field analysis methods involving proper orthogonal decomposition and quadruple proper orthogonal decomposition for internal combustion engines, Int. J. Engine Res. 22, 1, 222–242. [CrossRef] [Google Scholar]
  • Graftieaux L., Michard M., Grosjean N. (2001) Combining piv, pod and vortex identification algorithms for the study of unsteady turbulent swirling flows, Meas. Sci. Technol. 12, 9, 1422. [CrossRef] [Google Scholar]
  • Bücker I., Karhoff D.-C., Klaas M., Schröder W. (2012) Stereoscopic multi-planar piv measurements of in-cylinder tumbling flow, Exp. Fluids 53, 6, 1993–2009. [CrossRef] [Google Scholar]
  • Janas P., Wlokas I., Böhm B., Kempf A. (2017) On the evolution of the flow field in a spark ignition engine, Flow Turbul. Combust. 98, 1, 237–264. [CrossRef] [Google Scholar]
  • Nicollet F. (2019) Analysis of cyclic phenomena in a gasoline direct injection engine of flow and mixture formation using Large-Eddy Simulation and high-speed particle image velocimetry. [Google Scholar]
  • Gohlke M., Beaudoin J.-F., Amielh M., Anselmet F. (2008) Thorough analysis of vortical structures in the flow around a yawed bluff body, J. Turbul. 9, N15. [CrossRef] [Google Scholar]
  • Schmitt M., Hu R., Wright Y.M., Soltic P., Boulouchos K. (2015) Multiple cycle LES simulations of a direct injection natural gas engine, Flow Turbul. Combust. 95, 4, 645–668. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.