Sci. Tech. Energ. Transition
Volume 77, 2022
Selected Papers from 7th International Symposium on Hydrogen Energy, Renewable Energy and Materials (HEREM), 2021
Numéro d'article 8
Nombre de pages 14
Publié en ligne 17 mai 2022
  • Su A., Chen H., Zhao J.-X., Zhang T.-W., Feng Y.-X., Wang C. (2020) Natural gas washing induces condensate formation from coal measures in the Pinghu Slope Belt of the Xihu Depression, East China Sea Basin: Insights from fluid inclusion, geochemistry, and rock gold-tube pyrolysis, Mar. Pet. Geol. 118, 104450. [CrossRef] [Google Scholar]
  • Valiollahi S., Kavianpour B., Raeissi S., Moshfeghian M. (2016) A new Peng-Robinson modification to enhance dew point estimations of natural gases, J. Nat. Gas Sci. Eng. 34, 1137–1147. [CrossRef] [Google Scholar]
  • Abd A.A., Naji S.Z., Thian T.C., Othman M.R. (2021) Evaluation of hydrogen concentration effect on the natural gas properties and flow performance, Int. J. Hydrog. Energy 46, 974–983. [CrossRef] [Google Scholar]
  • Baccanelli M., Langé S., Rocco M.V., Pellegrini L.A., Colombo E. (2016) Low temperature techniques for natural gas purification and LNG production: An energy and exergy analysis, Appl. Energy 180, 546–559. [CrossRef] [Google Scholar]
  • Chen X., Yu J., Zhang Y. (2021) The use of axial cyclone separator in the separation of wax from natural gas: A theoretical approach, Energy Rep. 7, 2615–2624. [CrossRef] [Google Scholar]
  • Abd A.A., Naji S.Z., Hashim A.S. (2020) Effects of non-hydrocarbons impurities on the typical natural gas mixture flows through a pipeline, J. Nat. Gas Sci. Eng. 76, 103218. [CrossRef] [Google Scholar]
  • Cao X., Guo D., Sun W., Zhang P., Ding G., Bian J. (2021) Supersonic separation technology for carbon dioxide and hydrogen sulfide removal from natural gas, J. Clean. Prod. 288, 125689. [CrossRef] [Google Scholar]
  • Ding W., Hou D., Zhang W., He D., Cheng X. (2018) New genetic type of natural gases and origin analysis in Northern Songnan-Baodao Sag, Qiongdongnan Basin, South China Sea, J. Nat. Gas Sci. Eng. 50, 384–398. [CrossRef] [Google Scholar]
  • Gao R., Zhang C., Jun K.-W., Kim S.K., Park H.-G., Zhao T., Wang L., Wan H., Guan G. (2021) Green liquid fuel and synthetic natural gas production via CO2 hydrogenation combined with reverse water-gas-shift and co-based Fischer-Tropsch synthesis, J. CO2 Util. 51, 101619. [CrossRef] [Google Scholar]
  • Gutierrez J.P., Benitez L.A., Ale Ruiz E.L., Erdmann E. (2016) A sensitivity analysis and a comparison of two simulators performance for the process of natural gas sweetening, J. Nat. Gas Sci. Eng. 31, 800–807. [CrossRef] [Google Scholar]
  • Harrigan D.J., Yang J., Sundell B.J., Lawrence J.A., O’Brien J.T., Ostraat M.L. (2020) Sour gas transport in poly (ether-b-amide) membranes for natural gas separations, J. Membr. Sci. 595, 117497. [CrossRef] [Google Scholar]
  • Karousos D.S., Lei L., Lindbråthen A., Sapalidis A.A., Kouvelos E.P., He X., Favvas E.P. (2020) Cellulose-based carbon hollow fiber membranes for high-pressure mixed gas separations of CO2/CH4 and CO2/N2, Sep. Purif. Technol. 253, 117473. [CrossRef] [Google Scholar]
  • Li J.-B., Zhong D.-L., Yan J. (2020) Improving gas hydrate-based CH4 separation from low-concentration coalbed methane by graphene oxide nanofluids, J. Nat. Gas Sci. Eng. 76, 103212. [CrossRef] [Google Scholar]
  • Liu P., Zhang H., Xiang H., Yan Y. (2016) Adsorption separation for high purity propane from liquefied petroleum gas in a fixed bed by removal of alkanes, Sep. Purif. Technol. 158, 1–8. [CrossRef] [Google Scholar]
  • Park J., Yoon S., Oh S.-Y., Kim Y., Kim J.-K. (2021) Improving energy efficiency for a low-temperature CO2 separation process in natural gas processing, Energy 214, 118844. [CrossRef] [Google Scholar]
  • Quader M.A., Rufford T.E., Smart S. (2021) Integration of hybrid membrane-distillation processes to recover helium from pre-treated natural gas in liquefied natural gas plants, Sep. Purif. Technol. 263, 118355. [CrossRef] [Google Scholar]
  • Quan Q., Ran W., Yang L., Gao G., Wang S., Gong J. (2018) The effect of pressure on wax deposition from wax-solvent mixtures with natural gas, J. Pet. Sci. Eng. 171, 1318–1325. [CrossRef] [Google Scholar]
  • Karthigaiselvan K., Panda R.C. (2021) Dynamic modeling and solubility studies of sour gases during sweetening process of natural gas, J. Nat. Gas Sci. Eng. 95, 104087. [CrossRef] [Google Scholar]
  • Shi B.-H., Song S.-F., Lv X.-F., Li W.-Q., Wang Y., Ding L., Liu Y., Yang J.-H., Wu H.-H., Wang W., Gong J. (2018) Investigation on natural gas hydrate dissociation from a slurry to a water-in-oil emulsion in a high-pressure flow loop, Fuel 233, 743–758. [CrossRef] [Google Scholar]
  • Spoladore A., Borelli D., Devia F., Mora F., Schenone C. (2016) Model for forecasting residential heat demand based on natural gas consumption and energy performance indicators, Appl. Energy 182, 488–499. [CrossRef] [Google Scholar]
  • Wang H. (2019) A non-isothermal wellbore model for high pressure high temperature natural gas reservoirs and its application in mitigating wax deposition, J. Nat. Gas Sci. Eng. 72, 103016. [CrossRef] [Google Scholar]
  • Wang J., Zhou F., Zhang L., Huang Y., Yao E., Zhang L., Wang F., Fan F. (2019) Experimental study of wax deposition pattern concerning deep condensate gas in Bozi block of Tarim Oilfield and its application, Thermochim. Acta 671, 1–9. [CrossRef] [Google Scholar]
  • Xie Y., Meng J., Chen D. (2021) Wax deposition law and OLGA-Based prediction method for multiphase flow in submarine pipelines, Petroleum. [Google Scholar]
  • Zhu L., Liu H., Zhang Z., Pu Y. (2016) Simulation analysis of stripping fractionation process of gas condensate treatment and practical application, J. Nat. Gas Sci. Eng. 34, 216–225. [CrossRef] [Google Scholar]
  • Xu X., Cai L., Chen T., Zhan Z. (2021) Analysis and optimization of a natural gas multi-stage expansion plant integrated with a gas engine-driven heat pump, Energy 236, 121321. [CrossRef] [Google Scholar]
  • Yang J., Feng Y., Zhang B., Tang Y., Jiang Z. (2021) A blockage removal technology for natural gas hydrates in the wellbore of an ultra-high pressure sour gas well, Natural Gas Ind. B 8, 188–194. [CrossRef] [Google Scholar]
  • Zhang D., Huang Q., Wang W., Li H., Zheng H., Li R., Li W., Kong W. (2021) Effects of waxes and asphaltenes on CO2 hydrate nucleation and decomposition in oil-dominated systems, J. Nat. Gas Sci. Eng. 88, 103799. [CrossRef] [Google Scholar]
  • Zhu G., Chi L., Zhang Z., Li T., Yang H., Chen W., Zhao K., Yan H. (2019) Composition and origin of molecular compounds in the condensate oils of the Dabei gas field, Tarim Basin, NW China, Pet. Explor. Dev. 46, 504–517. [CrossRef] [MathSciNet] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.