Numéro |
Sci. Tech. Energ. Transition
Volume 80, 2025
Innovative Strategies and Technologies for Sustainable Renewable Energy and Low-Carbon Development
|
|
---|---|---|
Numéro d'article | 33 | |
Nombre de pages | 19 | |
DOI | https://doi.org/10.2516/stet/2025010 | |
Publié en ligne | 2 avril 2025 |
Regular Article
Online intelligent parameter and speed estimation of permanent magnet synchronous motors using bacterial foraging optimization
1
Department of Electrical Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
2
University of Gabes, National Engineering School of Gabes, 6072, Tunisia
3
Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
4
Applied Science Research Center, Applied Science Private University, Amman, 11931, Jordan
5
Jadara University Research Center, Jadara University, Irbid, Jordan
6
College of Engineering and Technology, University of Doha for Science and Technology, Doha, Qatar
* Corresponding author: aymen.flah@enig.u-gabes.tn
Received:
31
January
2025
Accepted:
27
February
2025
Accurate estimation of the parameters and speed of Permanent Magnet Synchronous Motors (PMSMs) is crucial for achieving optimal performance in control applications. Traditional methods, such as the Model Reference Adaptive System (MRAS) rely on manually tuned Proportional-Integral (PI) controllers, leading to suboptimal results due to fixed tuning parameters that do not adapt to varying operating conditions. This limitation affects the precision of parameter identification, leading to potential inefficiencies in motor control. This paper proposes an intelligent online estimation method that leverages Popov hyperstability theory and the Bacterial Foraging Optimization (BFO) algorithm to address this issue. The proposed approach simultaneously estimates three key PMSM parameters – stator resistance, inductance, and permanent magnet flux – along with the actual motor speed. Unlike conventional methods, an online BFO-based tuning algorithm is integrated into the MRAS framework, allowing adaptive and optimal adjustment of controller parameters in real time. Extensive practical evaluations demonstrate that the proposed method significantly improves estimation accuracy and adaptability compared to traditional approaches. The results confirm its effectiveness in enhancing PMSM control performance, making it a promising solution for high-precision motor applications. Experimental results demonstrate a 12% improvement in estimation precision compared to traditional manual tuning methods.
Key words: PMSM / MRAS / Parameters estimation / Bacterial foraging optimization / Speed variation
© The Author(s), published by EDP Sciences, 2025
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.