Issue
Sci. Tech. Energ. Transition
Volume 80, 2025
Innovative Strategies and Technologies for Sustainable Renewable Energy and Low-Carbon Development
Article Number 33
Number of page(s) 19
DOI https://doi.org/10.2516/stet/2025010
Published online 02 April 2025
  • Guo Z.Q., Panda S.K. (2015) Design of a sliding mode observer for sensorless control of SPMSM operating at medium and high speeds, in: 2015 IEEE Symposium on Sensorless Control for Electrical Drives (SLED), Sydney, NSW, Australia, 7–8 June, IEEE, pp. 1–6. [Google Scholar]
  • Habibullah M., Lu D.D.C., Xiao D., Fletcher J.E., Rahman M.F. (2017) Predictive torque control of induction motor sensorless drive fed by a 3L-NPC inverter, IEEE Trans. Industr. Inform. 13, 60–70. [Google Scholar]
  • Hammoumi D., El Bekkali C., Karim M., Taoussi M., El Ouanjli N., Bossoufi B. (2019) Direct controls for wind turbine with PMSG used on the real wind profile of Essaouira-Morocco City, Indones. J. Electr. Eng. Comput. Sci. 16, 3, 1229–1239. [Google Scholar]
  • Flah A., Novák M., Sbita L., Novák J. (2014) Estimation of motor parameters for an electrical vehicle application, Int. J. Model. Identif. Control 22, 2, 150–158. [Google Scholar]
  • Ademi S., Jovanović M. (2014) Maximum torque per inverter ampere control of brushless doubly-fed reluctance generators for wind turbines, in: 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, pp. 883–888. [Google Scholar]
  • Novak Z. (2024) Confidence weighted learning entropy for fault-tolerant control of a PMSM with a high-resolution hall encoder, IEEE Trans. Ind. Electr. 71, 5, 5176–5186. [Google Scholar]
  • Ishikawa T., Seki Y., Kurita N. (2013) Analysis for fault detection of vector-controlled permanent magnet synchronous motor with permanent magnet defect, IEEE Trans. Magn. 49, 2331–2334. [Google Scholar]
  • Gao P., Gu Y., Wang X. (2018) The design of a permanent magnet in-wheel motor with dual-stator and dual-field-excitation used in electric vehicles, Energies 11, 2, 424. [Google Scholar]
  • Morandin M., Faggion A., Bolognani S. (2015) Integrated starter – alternator with sensorless ringed-pole PM synchronous motor drive, IEEE Trans. Ind. Appl. 51, 1485–1493. [Google Scholar]
  • Eltuhamy R.A., Rady M., Almatrafi E., Mahmoud H.A., Ibrahim K.H. (2023) Fault detection and classification of CIGS thin-film PV modules using an adaptive neuro-fuzzy inference scheme, Sensors 23, 3, 1280. [CrossRef] [PubMed] [Google Scholar]
  • Stefanovski J. (2014) Kalman-Yakubovič-Popov lemma for descriptor systems, Syst. Control Lett. 74, 8–13. [Google Scholar]
  • Zhu X., Li J., Zhong Y., Choi K.S., Shirinzadeh B., Smith J., Gu Cl. (2023) Iterative Kalman filter for biological tissue identification, Int. J. Robust Nonlinear Control., 1–13. https://doi.org/10.1002/rnc.6742 [Google Scholar]
  • Qi H., Zhang Y., Gao N. (2015) Research and implement of PMSM regenerative braking strategy based on controllable rectification, in: 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, Sydney, NSW, Australia, 9–12 June, IEEE, pp. 289–294. [Google Scholar]
  • Richardson C.R., Turner M.C., Gunn S.R. (2024) Strengthened Circle and Popov criteria and the analysis of ReLU neural networks, in: 2024 UKACC 14th International Conference on Control (CONTROL), Winchester, UK, 10–12 April, IEEE, pp. 127–128. [Google Scholar]
  • Kumar D., Sunori S.K., Jain S. (2024) Bacterial foraging optimization of electric vehicle charging systems, in: 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA), Theni, India, 11–13 December, IEEE, pp. 267–272. [Google Scholar]
  • He C., Hu J., Ran X., Wei F., Li Y., Zhu Y. (2024) A simplified constrained predictive position control for PMSM drives with laguerre functions, IEEE Trans. Ind. Electron. 71, 12, 15478–15487. [Google Scholar]
  • Salahuddin H., Imdad K., Chaudhry M.U., Iqbal M.M., Bolshev V., Hussain A., Flah A., Panchenko V., Jasiński M. (2022) Electric vehicle transient speed control based on vector control FM-PI speed controller for induction motor, Appl. Sci. 12, 17, 8694. [Google Scholar]
  • Farhat M., Barambones O., Flah A., Sbita L. (2016) Variable structure MPP controller for photovoltaic pumping system, Trans. Inst. Meas. Control. 39, 9, 1283–1292. [Google Scholar]
  • Feifei H., Zhonghua W., Yueyang L., Tongyi H. (2015) Sensorless speed control of permanent magnet synchronous motor based on RBF neural network, in: 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July, IEEE, pp. 4325–4330. [Google Scholar]
  • Itani K., De Bernardinis A., Zoubir K., Jammal A. (2016) Extreme conditions regenerative braking modeling, control and simulation of a hybrid energy storage system for an electric vehicle, IEEE Trans. Transp. Electrif. 7782, 99, 1–16. [Google Scholar]
  • Aymen F., Mohamed N., Chayma S., Reddy R., Alharthi M., Ghoneim S.S.M. (2021) An improved direct torque control topology of a double stator machine using the fuzzy logic controller, IEEE Access 9, 1. [Google Scholar]
  • Gritli Y., Di Tommaso A.O., Miceli R., Filippetti F., Rossi C. (2013) Vibration signature analysis for rotor broken bar diagnosis in double cage induction motor drives, in: 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, 13–17 May, IEEE, pp. 1814–1820. [Google Scholar]
  • Oubelaid A., Taib N., Nikolovski S., Alharbi T.E.A., Rekioua T., Flah A., Ghoneim S.S.M. (2022) Intelligent speed control and performance investigation of a vector controlled electric vehicle considering driving cycles, Electronics 11, 1925. [Google Scholar]
  • Flah A., Majed A., Bajaj M., Naveen K.S., Mishra S., Sharma S.K. (2021) Electric vehicle model based on multiple recharge system and a particular traction motor conception, IEEE Access 9, 49308–49324. [Google Scholar]
  • Gabbi T.S., Gründling H.A., Vieira R.P. (2016) Sliding mode MRAS speed observer applied to Permanent Magnet Synchronous Motor with decoupled current control, in: IECON 2016 – 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October, IEEE, pp. 2929–2934. [Google Scholar]
  • Flah A., Novak M., Lassaad S. (2018) An improved reactive power MRAS speed estimator with optimization for a hybrid electric vehicles application, ASME J. Dyn. Syst. Meas. Control. 140(6), 061016. https://doi.org/10.1115/1.4039212. [Google Scholar]
  • Aminu M. (2019) A parameter estimation algorithm for induction machines using Artificial Bee Colony (ABC) optimization, Niger. J. Technol. 38, 1, 193. [Google Scholar]
  • Antonelli S.L., Donolo P.D., Pezzani C.M., Quispe E.C., De Angelo C.H. (2023) Identification of induction motor parameters using genetic algorithms, in: 2023 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Cali, Colombia, 5–6 October, IEEE, pp. 1–7. [Google Scholar]
  • Çanakoğlu A.I., Yetgin A.G., Temurtaş H., Turan M. (2014) Induction motor parameter estimation using metaheuristic methods, Turk. J. Elec. Eng. Comp. Sci. 22(5), Article 6. https://doi.org/10.3906/elk-1211-171 [Google Scholar]
  • Duan F., Živanović R., Al-Sarawi S., Mba D. (2016) Induction motor parameter estimation using sparse grid optimization algorithm, IEEE Trans. Ind. Inform. 12, 4, 1453–1461. [Google Scholar]
  • Hafez I., Dhaouadi R. (2023) Identification of mechanical parameters in flexible drive systems using hybrid particle swarm optimization based on the quasi-newton method, Algorithms 16, 8, 371. [Google Scholar]
  • Koubaa Y. (2004) Recursive identification of induction motor parameters, Simul. Model. Pract. Theory 12, 5, 363–381. [Google Scholar]
  • Montoya O.D., De Angelo C.H., Bossio G. (2024) Parametric estimation in three-phase induction motors using torque data via the generalized normal distribution optimizer, Results Eng. 23, 102446. [Google Scholar]
  • Nikranajbar A., Ebrahimi M.K., Wood A.S. (2010) Parameter identification of a cage induction motor using particle swarm optimization, Proc. Inst. Mech. Eng. Part I J. Syst. Contr. Eng. 224, 5, 479–491. [Google Scholar]
  • Yang J., Shen Y., Tan Y. (2024) Parameter compensation for the predictive control system of a permanent magnet synchronous motor based on bacterial foraging optimization algorithm, World Electr. Veh. J. 15, 1, 23. [Google Scholar]
  • Hung J.C. (2016) Memetic particle swarm optimization algorithm for DOA estimation under multipath environment, in: 2016 2nd International Conference on Control Science and Systems Engineering (ICCSSE), Singapore, 27–29 July, IEEE, pp. 36–41. [Google Scholar]
  • Flah A., Sbita L. (2013) A novel IMC controller based on bacterial foraging optimization algorithm applied to a high speed range PMSM drive, Appl. Intell. 38, 114–129. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.