Numéro |
Sci. Tech. Energ. Transition
Volume 79, 2024
|
|
---|---|---|
Numéro d'article | 83 | |
Nombre de pages | 12 | |
DOI | https://doi.org/10.2516/stet/2024078 | |
Publié en ligne | 15 octobre 2024 |
Regular Article
An autoscalable approach to optimize energy consumption using smart meters data in serverless computing
Computer Science and Engineering Department, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
* Corresponding author: jkaur_phd20@thapar.edu
Received:
9
April
2024
Accepted:
2
September
2024
Serverless computing has evolved as a prominent paradigm within cloud computing, providing on-demand resource provisioning and capabilities crucial to Science and Technology for Energy Transition (STET) applications. Despite the efficiency of the auto-scalable approaches in optimizing performance and cost in distributed systems, their potential remains underutilized in serverless computing due to the lack of comprehensive approaches. So an auto-scalable approach has been designed using Q-learning, which enables optimal resource scaling decisions. This approach proves useful for adjusting resources dynamically to maximize resource utilization by automatically scaling up or down resources as needed. Further, the proposed approach has been validated using AWS Lambda with key performance metrics such as probability of cold start, average response time, idle instance count, energy consumption, etc. The experimental results demonstrate that the proposed approach performs better than the existing approach by considering the above parameters. Finally, the proposed approach has also been validated to optimize the energy consumption of smart meter data.
Key words: Serverless computing / Autoscaling / Q-learning / Performance / Energy consumption
© The Author(s), published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.