Open Access
Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Article Number 83
Number of page(s) 12
DOI https://doi.org/10.2516/stet/2024078
Published online 15 October 2024
  • Zafeiropoulos A., Fotopoulou E., Filinis N., Papavassiliou S. (2022) Reinforcement learning-assisted autoscaling mechanisms for serverless computing platforms, Simul. Modell. Pract. Theory 116, 102461. [CrossRef] [Google Scholar]
  • Shahrad M., Fonseca R., Goiri I., Chaudhry G., Batum P., Cooke J., Laureano E., Tresness C., Russinovich M., Bianchini R. (2020) Serverless in the wild: characterizing and optimizing the serverless workload at a large cloud provider, in: 2020 USENIX annual technical conference (USENIX ATC 20), pp. 205–218. [Google Scholar]
  • Agarwal S., Rodriguez M.A., Buyya R. (2021) A reinforcement learning approach to reduce serverless function cold start frequency, in: 2021 IEEE/ACM 21st international symposium on cluster, cloud and internet computing (CCGrid), IEEE, pp. 797–803. [CrossRef] [Google Scholar]
  • Schuler L., Jamil S., Kühl N. (2021) Ai-based resource allocation: reinforcement learning for adaptive auto-scaling in serverless environments, in: 2021 IEEE/ACM 21st international symposium on cluster, cloud and internet computing (CCGrid), IEEE, pp. 804–811. [CrossRef] [Google Scholar]
  • Van Eyk E., Iosup A., Abad C.L., Grohmann J., Eismann S. (2018) A spec rg cloud group’s vision on the performance challenges of faas cloud architectures, in: Companion of the 2018 ACM/SPEC international conference on performance engineering, pp. 21–24. [CrossRef] [Google Scholar]
  • Wang L., Li M., Zhang Y., Ristenpart T., Swift M. (2018) Peeking behind the curtains of serverless platforms, in: 2018 USENIX annual technical conference (USENIX ATC 18), pp. 133–146. [Google Scholar]
  • McGrath G., Brenner P.R. (2017) Serverless computing: design, implementation, and performance, in: 2017 IEEE 37th international conference on distributed computing systems workshops (ICDCSW), IEEE, pp. 405–410. [Google Scholar]
  • Kaur S., Bala A., Parashar A. (2024) A multi-step electricity prediction model for residential buildings based on ensemble empirical mode decomposition technique, Sci. Technol. Energy Trans. 79, 7. [Google Scholar]
  • Aljicevic Z., Kasapovic S., Hivziefendic J., Kevric J., Mujkic S. (2023) Resource allocation model for cloud-fog-based smart grid, Sci. Technol. Energy Trans. 78, 28. [Google Scholar]
  • Mahmoudi N., Khazaei H. (2020) Performance modeling of serverless computing platforms, IEEE Trans. Cloud Comput. 10, 4, 2834–2847. [Google Scholar]
  • Mahmoudi N., Khazaei H. (2020) Temporal performance modelling of serverless computing platforms, in: Proceedings of the 2020 sixth international workshop on serverless computing, pp. 1–6. [Google Scholar]
  • Mahmoudi N., Khazaei H. (2021) Simfaas: a performance simulator for serverless computing platforms, arXiv preprint arXiv:2102.08904. [Google Scholar]
  • Jawaddi S.N.A., Ismail A. (2023) Autoscaling in serverless computing: taxonomy and openchallenges. [Google Scholar]
  • Suresh A., Somashekar G., Varadarajan A., Kakarla V.R., Upadhyay H., Gandhi A. (2020) Ensure: efficient scheduling and autonomous resource management in serverless environments, in: 2020 IEEE international conference on autonomic computing and self-organizing systems (ACSOS), IEEE, pp. 1–10. [Google Scholar]
  • Shankar V., Krauth K., Vodrahalli K., Pu Q., Recht B., Stoica I., Ragan-Kelley J., Jonas E., Venkataraman S. (2020) Serverless linear algebra, in: Proceedings of the 11th ACM symposium on cloud computing, pp. 281–295. [CrossRef] [Google Scholar]
  • Mahmoudi N., Khazaei H. (2022) Performance modeling of metric-based serverless computing platforms, IEEE Trans. Cloud Comput. 11, 2, 1899–1910. [Google Scholar]
  • Zhao Y., Uta A. (2022) Tiny autoscalers for tiny workloads: dynamic cpu allocation for serverless functions, in: 2022 22nd IEEE international symposium on cluster, cloud and internet computing (CCGrid), IEEE, pp. 170–179. [CrossRef] [Google Scholar]
  • Wen J., Chen Z., Liu Y., Lou Y., Ma Y., Huang G., Jin X., Liu X. (2021) An empirical study on challenges of application development in serverless computing, in: Proceedings of the 29th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, pp. 416–428. [CrossRef] [Google Scholar]
  • Pérez A., Risco S., Naranjo D.M., Caballer M., Moltó G. (2019) On-premises serverless computing for event-driven data processing applications, in: 2019 IEEE 12th international conference on cloud computing (CLOUD), IEEE, pp. 414–421. [CrossRef] [Google Scholar]
  • Kim J., Lee K. (2020) I/o resource isolation of public cloud serverless function runtimes for data-intensive applications, Cluster Comput. 23, 2249–2259. [CrossRef] [Google Scholar]
  • Enes J., Expósito R.R., Touriño J. (2020) Real-time resource scaling platform for big data workloads on serverless environments, Future Gen. Comput. Syst. 105, 361–379. [CrossRef] [Google Scholar]
  • Jackson D., Clynch G. (2018) An investigation of the impact of language runtime on the performance and cost of serverless functions, in: 2018 IEEE/ACM international conference on utility and cloud computing companion (UCC companion), IEEE, pp. 154–160. [CrossRef] [Google Scholar]
  • Shafiei H., Khonsari A., Mousavi P. (2022) Serverless computing: a survey of opportunities, challenges, and applications, ACM Comput. Surv. 54, 11s, 1–32. [CrossRef] [Google Scholar]
  • Singh P., Kaur A., Gill S.S. (2022) Machine learning for cloud, fog, edge and serverless computing environments: comparisons, performance evaluation benchmark and future directions, Int. J. Grid Util. Comput. 13, 4, 447–457. [CrossRef] [Google Scholar]
  • Golec M., Ozturac R., Pooranian Z., Gill S.S., Buyya R. (2021) Ifaasbus: a security-and privacy-based lightweight framework for serverless computing using iot and machine learning, IEEE Trans. Industr. Inform. 18, 5, 3522–3529. [Google Scholar]
  • Grafberger A., Chadha M., Jindal A., Gu J., Gerndt M. (2021) Fedless: secure and scalable federated learning using serverless computing, in: 2021 IEEE international conference on big data (big data), IEEE, pp. 164–173. [CrossRef] [Google Scholar]
  • Li Z., Guo L., Cheng J., Chen Q., He B., Guo M. (2022) The serverless computing survey: a technical primer for design architecture, ACM Comput. Surv. (CSUR) 54, 10s, 1–34. [CrossRef] [Google Scholar]
  • Bebortta S., Das S.K., Kandpal M., Barik R.K., Dubey H. (2020) Geospatial serverless computing: architectures, tools and future directions, ISPRS Int. J. Geo-Inform. 9, 5, 311. [CrossRef] [Google Scholar]
  • Gill S.S. (2024) Quantum and blockchain based serverless edge computing: a vision, model, new trends and future directions, Internet Technol. Lett. 7, 1, e275. [CrossRef] [Google Scholar]
  • Mateus-Coelho N., Cruz-Cunha M. (2022) Serverless service architectures and security minimals, in: 2022 10th international symposium on digital forensics and security (ISDFS), IEEE, pp. 1–6. [Google Scholar]
  • Marin E., Perino D., Di Pietro R. (2022) Serverless computing: a security perspective, J. Cloud Comput. 11, 1, 1–12. [Google Scholar]
  • Yussupov V., Breitenbücher U., Leymann F., Wurster M. (2019) A systematic mapping study on engineering function-as-a-service platforms and tools, in: Proceedings of the 12th IEEE/ACM international conference on utility and cloud computing, pp. 229–240. [Google Scholar]
  • Van Eyk E., Toader L., Talluri S., Versluis L., Uță A., Iosup A. (2018) Serverless is more: from paas to present cloud computing, IEEE Internet Comput. 22, 5, 8–17. [CrossRef] [Google Scholar]
  • Cordingly R., Shu W., Lloyd W.J. (2020) Predicting performance and cost of serverless computing functions with saaf, in: 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), IEEE, pp. 640–649. [Google Scholar]
  • Bardsley D., Ryan L., Howard J. (2018) Serverless performance and optimization strategies, in: 2018 IEEE international conference on smart cloud (smart cloud), IEEE, pp. 19–26. [CrossRef] [Google Scholar]
  • Rajan R.A.P. (2018) Serverless architecture-a revolution in cloud computing, in: 2018 tenth international conference on advanced computing (ICoAC), IEEE, pp. 88–93. [CrossRef] [Google Scholar]
  • Grogan J., Mulready C., McDermott J., Urbanavicius M., Yilmaz M., Abgaz Y., McCarren A., MacMahon S.T., Garousi V., Elger P., et al. (2020) A multivocal literature review of function-as-a-service (faas) infrastructures and implications for software developers, in: Systems, software and services process improvement: 27th European conference, EuroSPI 2020, Düsseldorf, Germany, September 9–11, 2020, Proceedings 27, Springer, pp. 58–75. [Google Scholar]
  • Vahidinia P., Farahani B., Aliee F.S. (2022) Mitigating cold start problem in serverless computing: a reinforcement learning approach, IEEE Internet Things J. 10, 5, 3917–3927. [Google Scholar]
  • Liu X., Wen J., Chen Z., Li D., Chen J., Liu Y., Wang H., Jin X. (2023) Faaslight: general application-level cold-start latency optimization for function-as-a-service in serverless computing, ACM Trans. Software Eng. Methodol. 32, 5, 1–29. [Google Scholar]
  • Fuerst A., Sharma P. (2021) Faascache: keeping serverless computing alive with greedy-dual caching, in: Proceedings of the 26th ACM international conference on architectural support for programming languages and operating systems, pp. 386–400. [CrossRef] [Google Scholar]
  • Mampage A., Karunasekera S., Buyya R. (2021) Deadline-aware dynamic resource management in serverless computing environments, in: 2021 IEEE/ACM 21st international symposium on cluster, cloud and internet computing (CCGrid), IEEE, pp. 483–492. [CrossRef] [Google Scholar]
  • Kaur G., Bala A., Chana I. (2019) An intelligent regressive ensemble approach for predicting resource usage in cloud computing, J. Parallel Distrib. Comput. 123, 1–12. [CrossRef] [Google Scholar]
  • Datta S., Addya S.K., Ghosh S.K. (2024) Esma: towards elevating system happiness in a decentralized serverless edge computing framework, J. Parallel Distrib. Comput. 183, 104762. [CrossRef] [Google Scholar]
  • Naranjo D.M., Risco S., de Alfonso C., Pérez A., Blanquer I., Moltó G. (2020) Accelerated serverless computing based on gpu virtualization, J. Parallel Distrib. Comput. 139, 32–42. [CrossRef] [Google Scholar]
  • Sarroca P.G., Sánchez-Artigas M. (2024) Mlless: achieving cost efficiency in serverless machine learning training, J. Parallel Distrib. Comput. 183, 104764. [CrossRef] [Google Scholar]
  • Zuk P., Rzadca K. (2022) Reducing response latency of composite functions-as-a-service through scheduling, J. Parallel Distrib. Comput. 167, 18–30. [CrossRef] [Google Scholar]
  • Solaiman K., Adnan M.A. (2020) Wlec: a not so cold architecture to mitigate cold start problem in serverless computing, in: 2020 IEEE international conference on cloud engineering (IC2E), IEEE, pp. 144–153. [CrossRef] [Google Scholar]
  • Suo K., Shi Y., Xu X., Cheng D., Chen W. (2020) Tackling cold start in serverless computing with container runtime reusing, in: Proceedings of the workshop on network application integration/codesign, pp. 54–55. [CrossRef] [Google Scholar]
  • Bermbach D., Karakaya A.-S., Buchholz S. (2020) Using application knowledge to reduce cold starts in faas services, in: Proceedings of the 35th annual ACM symposium on applied computing, pp. 134–143. [CrossRef] [Google Scholar]
  • Jia Z., Witchel E. (2021) Nightcore: efficient and scalable serverless computing for latency-sensitive, interactive microservices, in: Proceedings of the 26th ACM international conference on architectural support for programming languages and operating systems, pp. 152–166. [CrossRef] [Google Scholar]
  • Mittal V., Qi S., Bhattacharya R., Lyu X., Li J., Kulkarni S.G., Li D., Hwang J., Ramakrishnan K., Wood T. (2021) Mu: an efficient, fair and responsive serverless framework for resource-constrained edge clouds, in: Proceedings of the ACM symposium on cloud computing, pp. 168–181. [CrossRef] [Google Scholar]
  • Lee H., Satyam K., Fox G. (2018) Evaluation of production serverless computing environments, in: 2018 IEEE 11th international conference on cloud computing (CLOUD), IEEE, pp. 442–450. [CrossRef] [Google Scholar]
  • Vojta R. (2016) Aws journey: Api gateway & lambda & vpc performance, Zrzka’s adventures. [Google Scholar]
  • Akkus I.E., Chen R., Rimac I., Stein M., Satzke K., Beck A., Aditya P., Hilt V. (2018) {SAND}: towards {High-Performance} serverless computing, in: 2018 USENIX annual technical conference (USENIX ATC 18), 2018, pp. 923–935. [Google Scholar]
  • Manner J., Endreß M., Heckel T., Wirtz G. (2018) Cold start influencing factors in function as a service, in: 2018 IEEE/ACM international conference on utility and cloud computing companion (UCC companion), IEEE, pp. 181–188. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.