Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
|
|
---|---|---|
Article Number | 12 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.2516/stet/2024005 | |
Published online | 04 March 2024 |
- Bui M., Adjiman C.S., Bardow A., Anthony E.J., Boston A., Brown S., Fennell P.S., Fuss S., Galindo A., Hackett L.A., Hallett J.P., Herzog H.J., Jackson G., Kemper J., Krevor S., Maitland G.C., Matuszewski M., Metcalfe I.S., Petit C., Puxty G., Reimer J., Reiner D.M., Rubin E.S., Scott S.A., Shah N., Smit B., Trusler J.P.M., Webley P., Wilcox J., Mac Dowell N. (2018) Carbon capture and storage (CCS): the way forward, Energy Environ. Sci. 11, 1062–1176. https://doi.org/10.1039/C7EE02342A. [CrossRef] [Google Scholar]
- Gan M., Nguyen M.C., Zhang L., Wei N., Li J., Lei H., Wang Y., Li X., Stauffer P.H. (2021) Impact of reservoir parameters and wellbore permeability uncertainties on CO2 and brine leakage potential at the Shenhua CO2 storage site, China, Int. J. Greenh. Gas. Con. 111, 103443. [CrossRef] [Google Scholar]
- Al Baroudi H., Awoyomi A., Patchigolla K., Jonnalagadda K., Anthony E.J. (2021) A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage, Appl. Energy 287. https://doi.org/10.1016/j.apenergy.2021.116510. [CrossRef] [Google Scholar]
- Sun Q., Ampomah W., Kutsienyo E.J., Appold M., Adu-Gyamfi B., Dai Z., Soltanian M.R. (2020) Assessment of CO2 trapping mechanisms in partially depleted oil-bearing sands, Fuel 278. https://doi.org/10.1016/j.fuel.2020.118356. [Google Scholar]
- Bonto M., Welch M.J., Lüthje M., Andersen S.I., Veshareh M.J., Amour F., Afrough A., Mokhtari R., Hajiabadi M.R., Alizadeh M.R., Larsen C.N., Nick H.M. (2021) Challenges and enablers for large-scale CO2 storage in chalk formations, Earth Sci. Rev. 222, 103826. https://doi.org/10.1016/j.earscirev.2021.103826. [CrossRef] [Google Scholar]
- Gong H., Yu C., Jiang Q., Su N., Zhao X., Fan Z. (2022) Improving recovery efficiency by CO2 injection at late stage of steam assisted gravity drainage, Adv. Geo. Energy Res. 6, 276–285. https://doi.org/10.46690/ager.2022.04.02. [CrossRef] [Google Scholar]
- Vo Thanh H., Sugai Y., Nguele R., Sasaki K. (2020) Robust optimization of CO2 sequestration through a water alternating gas process under geological uncertainties in Cuu Long Basin, Vietnam, J. Nat. Gas. Sci. Eng. 76. https://doi.org/10.1016/j.jngse.2020.103208. [CrossRef] [Google Scholar]
- Sohal M.A., Le Gallo Y., Audigane P., de Dios J.C., Rigby S.P. (2021) Effect of geological heterogeneities on reservoir storage capacity and migration of CO2 plume in a deep saline fractured carbonate aquifer.Int, J. Greenh. Gas. Con. 108, 103306. https://doi.org/10.1016/j.ijggc.2021.103306. [CrossRef] [Google Scholar]
- Kumar S., Foroozesh J., Edlmann K., Rezk M.G., Lim C.Y. (2020) A comprehensive review of value-added CO2 sequestration in subsurface saline aquifers, J. Nat. Gas. Sci. Eng. 81, 103437. https://doi.org/10.1016/j.jngse.2020.103437. [CrossRef] [Google Scholar]
- Zhang T., Zhang W., Yang R., Liu Y., Jafari M. (2021) CO2 capture and storage monitoring based on remote sensing techniques: a review, J. Clean. Prod. 281, 124409. https://doi.org/10.1016/j.jclepro.2020.124409. [CrossRef] [Google Scholar]
- Iglauer S., Paluszny A., Pentland C.H., Blunt M.J. (2011) Residual CO2 imaged with X-ray micro-tomography, Geophys. Res. Lett. 38, L21403. https://doi.org/10.1029/2011GL049680. [Google Scholar]
- Naylor M., Wilkinson M., Haszeldine R.S. (2011) Calculation of CO2 column heights in depleted gas fields from known pre-production gas column heights, Mar. Petrol. Geol. 28, 1083–1093. https://doi.org/10.1016/j.marpetgeo.2010.10.005. [CrossRef] [Google Scholar]
- Agartan E., Trevisan L., Cihan A., Birkholzer J., Zhou Q., Illangasekare T.H. (2015) Experimental study on effects of geologic heterogeneity in enhancing dissolution trapping of supercritical CO2, Water Resour. Res. 51, 1635–1648. https://doi.org/10.1002/2014WR015778. [CrossRef] [Google Scholar]
- Iglauer S., Pentland C.H., Busch A. (2015) CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration, Water Resour. Res. 51, 729–774. https://doi.org/10.1002/2014WR015553. [CrossRef] [Google Scholar]
- Arif M., Al-Yaseri A.Z., Barifcani A., Lebedev M., Iglauer S. (2016) Impact of pressure and temperature on CO2-brine-mica contact angles and CO2-brine interfacial tension: Implications for carbon geo-sequestration, J. Colloid. Interf. Sci. 462, 208–215. https://doi.org/10.1016/j.jcis.2015.09.076. [CrossRef] [Google Scholar]
- Raza A., Rezaee R., Bing C.H., Gholami R., Hamid M.A., Nagarajan R. (2016) Carbon dioxide storage in subsurface geologic medium: A review on capillary trapping mechanism, Egypt. J. Pet. 25, 367–373. https://doi.org/10.1016/j.ejpe.2015.08.002. [CrossRef] [Google Scholar]
- Garing C., Gouze P., Kassab M., Riva M., Guadagnini A. (2015) Anti-correlated porosity-permeability changes during the dissolution of carbonate rocks: experimental evidences and modeling, Transport Porous Med. 107, 595–621. https://doi.org/10.1007/s11242-015-0456-2. [CrossRef] [Google Scholar]
- Yang B., Wang H., Wang B., Yi Y., Zhao C., Tian G. (2022) Effect of supercritical CO2-water/brine-rock interaction on microstructures and mechanical properties of tight sandstone, Transport Porous Med. https://doi.org/10.1007/s11242-022-01834-z. [Google Scholar]
- Cui G., Zhu L., Zhou Q., Ren S., Wang J. (2021) Geochemical reactions and their effect on CO2 storage efficiency during the whole process of CO2 EOR and subsequent storage, Int. J. Greenh. Gas. Con. 108, 103335. https://doi.org/10.1016/j.ijggc.2021.103335. [CrossRef] [Google Scholar]
- Burgass R., Chapoy A., Askvik K.M., Neeraas B.O., Li X. (2023) CO2 hydrate formation in NaCl systems and undersaturated aqueous solutions, Sci. Technol. Energy Transit. 78, 8. https://doi.org/10.2516/stet/2023005. [CrossRef] [Google Scholar]
- Hu P., Geng S., Liu X., Li C., Zhu R., He X. (2023) A three-dimensional numerical pressure transient analysis model for fractured horizontal wells in shale gas reservoirs, J. Hydrol. 620, 129545. https://doi.org/10.1016/j.jhydrol.2023.129545. [CrossRef] [Google Scholar]
- Jafari Raad S.M., Hassanzadeh H. (2017) Prospect for storage of impure carbon dioxide streams in deep saline aquifers – A convective dissolution perspective, Int. J. Greenh. Gas Con. 63, 350–355. https://doi.org/10.1016/j.ijggc.2017.06.011. [CrossRef] [Google Scholar]
- Zhang T., Li Z., Adenutsi C.D., Lai F. (2017) A new model for calculating permeability of natural fractures in dual-porosity reservoir, Adv. Geo-Energy Res. 1, 86–92. https://doi.org/10.26804/ager.2017.02.03. [CrossRef] [Google Scholar]
- Zheng Z., Wang D., Xue Z. (2023) X-ray CT experimental and global history matching analysis of CO2 flooding behavior in heterogeneous rocks with layered heterogeneity, Transport Porous Med. 147, 725–746. https://doi.org/10.1007/s11242-023-01928-2. [CrossRef] [Google Scholar]
- Jiang P., Li X., Xu R., Wang Y., Chen M., Wang H., Ruan B. (2014) Thermal modeling of CO2 in the injection well and reservoir at the Ordos CCS demonstration project, China, Int. J. Greenh. Gas Con. 23, 135–146. https://doi.org/10.1016/j.ijggc.2014.01.011. [CrossRef] [Google Scholar]
- Ershadnia R., Wallace C.D., Soltanian M.R. (2020) CO2 geological sequestration in heterogeneous binary media: Effects of geological and operational conditions, Adv. Geo-Energy Res. 4, 392–405. https://doi.org/10.46690/ager.2020.04.05. [CrossRef] [Google Scholar]
- Xu L., Li Q., Myers M., White C., Cao X. (2022) Migration of carbon dioxide in sandstone under various pressure/temperature conditions: From experiment to simulation, Greenh. Gas. Sci. Tech. 12, 233–248. https://doi.org/10.1002/ghg.2140. [CrossRef] [Google Scholar]
- Wang P., Wu X., Ge G., Wang X., Xu M., Wang F., Zhang Y., Wang H., Zheng Y. (2023) Evaluation of CO2 enhanced oil recovery and CO2 storage potential in oil reservoirs of petroliferous sedimentary basin, China, Sci Tech. Energy Trans. 78, 3. https://doi.org/10.2516/stet/2022022. [CrossRef] [Google Scholar]
- Sundal A., Miri R., Ravn T., Aagaard P. (2015) Modelling CO2 migration in aquifers; considering 3D seismic property data and the effect of site-typical depositional heterogeneities, Int. J. Greenh. Gas. Con. 39, 349–365. https://doi.org/10.1016/j.ijggc.2015.05.021. [CrossRef] [Google Scholar]
- Sidiq H., Amin R., Kennaird T. (2017) The study of relative permeability and residual gas saturation at high pressures and high temperatures, Adv. Geo-Energy Res. 1, 64–68. https://doi.org/10.26804/ager.2017.01.06. [Google Scholar]
- Wang Q., Zhao C., Zhou W., Yu H., Zhao J., Hu Y. (2022) Numerical simulation of formation water salinity redistribution in fractured shale reservoirs during hydraulic fracturing, J Petrol Sci Eng. 218, 111022. https://doi.org/10.1016/j.petrol.2022.111022. [CrossRef] [Google Scholar]
- Shao Q., Matthai S., Driesner T., Gross L. (2021) Predicting plume spreading during CO2 geo-sequestration: benchmarking a new hybrid finite element–finite volume compositional simulator with asynchronous time marching, Computat Geosci. 25, 299–323. https://doi.org/10.1007/s10596-020-10006-1. [CrossRef] [Google Scholar]
- Geng S., Li C., Li Y., Zhai S., Xu T., Gong Y., Jing M. (2023) Pressure transient analysis for multi-stage fractured horizontal wells considering threshold pressure gradient and stress sensitivity in tight sandstone gas reservoirs, Gas Sci. Eng. 116, 205030. https://doi.org/10.1016/j.jgsce.2023.205030. [CrossRef] [Google Scholar]
- Hesse M.A., Orr F.M., Tchelepi H.A. (2008) Gravity currents with residual trapping, J. Fluid Mech. 611, 35–60. https://doi.org/10.1017/S002211200800219X. [CrossRef] [MathSciNet] [Google Scholar]
- Nilsen H.M., Lie K., Andersen O. (2016) Robust simulation of sharp-interface models for fast estimation of CO2 trapping capacity in large-scale aquifer systems, Computat. Geosci. 20, 93–113. https://doi.org/10.1007/s10596-015-9549-9. [CrossRef] [MathSciNet] [Google Scholar]
- Nordbotten J.M., Flemisch B., Gasda S.E., Nilsen H.M., Fan Y., Pickup G.E., Wiese B., Celia M.A., Dahle H.K., Eigestad G.T., Pruess K. (2012) Uncertainties in practical simulation of CO2 storage, Int. J. Greenh. Gas. Con. 9, 234–242. https://doi.org/10.1016/j.ijggc.2012.03.007. [CrossRef] [Google Scholar]
- Zapata Y., Kristensen M.R., Huerta N., Brown C., Kabir C.S., Reza Z. (2020) CO2 geological storage: Critical insights on plume dynamics and storage efficiency during long-term injection and post-injection periods, J. Nat. Gas. Sci. Eng. 83, 103542. https://doi.org/10.1016/j.jngse.2020.103542. [CrossRef] [Google Scholar]
- Burnside N.M., Naylor M. (2014) Review and implications of relative permeability of CO2/brine systems and residual trapping of CO2, Int. J. Greenh. Gas. Con. 23, 1–11. https://doi.org/10.1016/j.ijggc.2014.01.013. [CrossRef] [Google Scholar]
- Vesovic V., Wakeham W.A., Olchowy G.A., Sengers J.V., Watson J.T.R., Millat J. (1990) The transport properties of carbon dioxide, J. Phys. Chem. Ref. Data. 19, 763–808. https://doi.org/10.1063/1.555875. [CrossRef] [Google Scholar]
- Kunz O., Wagner W. (2012) The GERG-2008 wide-range equation of state for natural gases and other mixtures: an expansion of GERG-2004, J. Chem. Eng. Data. 57, 3032–3091. https://doi.org/10.1021/je300655b. [CrossRef] [Google Scholar]
- Qu Z., Zhang W., Guo T. (2017) Influence of different fracture morphology on heat mining performance of enhanced geothermal systems based on COMSOL, Int. J. Hydrog. Energy 42, 18263–18278. https://doi.org/10.1016/j.ijhydene.2017.04.168. [CrossRef] [Google Scholar]
- Ajayi T., Gomes J.S., Bera A. (2019) A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches, Petrol. Sci. 16, 1028–1063. https://doi.org/10.1007/s12182-019-0340-8. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.