Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 20 | |
DOI | https://doi.org/10.2516/stet/2024006 | |
Published online | 04 March 2024 |
- IEA (2021) Energy access outlook 2021: From poverty to prosperity. Available at https://www.iea.org/reports/energy-access-outlook-2021. [Google Scholar]
- UNDP (2021) Sustainable development goal 7: affordable and clean energy. Available at https://www.undp.org/sustainable-development-goals/affordable-and-clean-energy. [Google Scholar]
- World Bank (2021) Energy access. Available at https://www.worldbank.org/en/topic/energyaccess. [Google Scholar]
- United Nations (2021) Sustainable development goals report 2021. Available at https://unstats.un.org/sdgs/report/2021/. [Google Scholar]
- Yesilyurt M.K., Arslan M., Eryilmaz T. (2019) Application of response surface methodology for the optimization of biodiesel production from yellow mustard (Sinapis alba L.) seed oil, Int. J. Green Energy 16, 1, 60–71. https://doi.org/10.1080/15435075.2018.1532431. [CrossRef] [Google Scholar]
- Zakeri B., Paulavets K., Barreto-Gomez L., Echeverri L.G., Pachauri S., Boza-Kiss B., Pouya S. (2022) Pandemic, war, and global energy transitions, Energies 15, 17, 6114. https://doi.org/10.3390/en15176114. [CrossRef] [Google Scholar]
- Arora N.K., Mishra I. (2022) Current scenario and future directions for sustainable development goal 2: A roadmap to zero hunger, Environ. Sustain. 5, 2, 129–133. [CrossRef] [Google Scholar]
- Hienuki S., Mitoma H., Ogata M., Uchida I., Kagawa S. (2021) Environmental and energy life cycle analyses of passenger vehicle systems using fossil fuel-derived hydrogen, Int. J. Hydrogen Energy 46, 73, 36569–36580. https://doi.org/10.1016/j.ijhydene.2021.08.135. [CrossRef] [Google Scholar]
- Holechek J.L., Geli H.M., Sawalhah M.N., Valdez R. (2022) A global assessment: can renewable energy replace fossil fuels by 2050? Sustainability 14, 8, 4792. https://doi.org/10.3390/su14084792. [CrossRef] [Google Scholar]
- Ajanovic A., Haas R. (2021) Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector, Int. J. Hydrogen Energy 46, 16, 10049–10058. https://doi.org/10.1016/j.ijhydene.2020.03.122. [CrossRef] [Google Scholar]
- Kober T., Schiffer H.W., Densing M., Panos E. (2020) Global energy perspectives to 2060–WEC’s World Energy Scenarios 2019, Energy Strategy Rev. 31, 100523. https://doi.org/10.1016/j.esr.2020.100523. [CrossRef] [Google Scholar]
- Harrington A., Hall J., Bassett M., Lu E., Zhao H. (2022) Combustion Characteristics and Exhaust Emissions of a Direct Injection SI Engine with Pure Ethanol and Methanol in Comparison to Gasoline (No. 2022-01-1089). SAE Technical Paper. https://doi.org/10.4271/2022-01-1089. [Google Scholar]
- Salamai A.A., Faisal S.M., Khan A.K. (2022) The relationship between inflation and GDP with reference to oil based economy, Int. J. Multidiscip. Res. Growth Eval.. Available at: https://www.allmultidisciplinaryjournal.com/uploads/archives/620B85264EDD61644922150.pdf. [Google Scholar]
- Li H., Liu Y., Luo X., Duan H. (2022) A novel nonlinear multivariable Verhulst grey prediction model: A case study of oil consumption forecasting in China, Energy Rep. 8, 3424–3436. https://doi.org/10.1016/j.egyr.2022.02.149. [CrossRef] [Google Scholar]
- Fayyazbakhsh A., Bell M.L., Zhu X., Mei X., Koutný M., Hajinajaf N., Zhang Y. (2022) Engine emissions with air pollutants and greenhouse gases and their control technologies, J. Clean. Prod. 134260. https://doi.org/10.1016/j.jclepro.2022.134260. [CrossRef] [Google Scholar]
- Masera K., Hossain A.K. (2023) Advancement of biodiesel fuel quality and NOx emission control techniques. Renew. Sustain. Energy Rev. 178, 113235. https://doi.org/10.1016/j.rser.2023.113235. [CrossRef] [Google Scholar]
- Gielen D., Boshell F., Saygin D., Bazilian M.D., Wagner N., Gorini R. (2019) The role of renewable energy in the global energy transformation, Energy Strategy Rev. 24, 38–50. https://doi.org/10.1016/j.esr.2019.01.006. [CrossRef] [Google Scholar]
- Ali A., Mushtaq A. (2023) Do biofuels really a need of the day: Approaches, mechanisms, applications and challenges, Int. J. Chem. Biochem. Sci. 23, 219–226. Available at: https://www.iscientific.org/wp-content/uploads/2023/05/25-IJCBS-23-23-28.pdf. [Google Scholar]
- Zhang S., Huang W., Huang Y.A., Zhang C. (2020) Plant species recognition methods using leaf image: Overview, Neurocomputing 408, 246–272. https://doi.org/10.1016/j.neucom.2019.09.113. [CrossRef] [Google Scholar]
- Basoglu F. (2018) Yemeklik yağ teknolojisi, 6th ed., Dora Publishing, Bursa, Turkey, p. 385. [Google Scholar]
- Lafarga T. (2021) Production and consumption of oils and oilseeds, in: Oil and Oilseed Processing: Opportunities and Challenges, pp. 1–21. https://doi.org/10.1002/9781119575313.ch1. [Google Scholar]
- Kepekci H. (2019) Bioenergy potential for energy generation from agriculture in Turkey, Eur. Int. J. Sci. Technol. 8, 3, 1–14. https://eijst.org.uk/articles/8.3.1.1-14.pdf. [Google Scholar]
- Ragit S.S., Mohapatra S.K., Gill P., Kundu K. (2012) Brown hemp methyl ester: transesterification process and evaluation of fuel properties, Biomass Bioenergy 41, 14–20. https://doi.org/10.1016/j.biombioe.2011.12.026. [CrossRef] [Google Scholar]
- Rehman M.S.U., Rashid N., Saif A., Mahmood T., Han J.I. (2013) Potential of bioenergy production from industrial hemp (Cannabis sativa): Pakistan perspective, Renew. Sustain. Energy Rev. 18, 154–164. https://doi.org/10.1016/j.rser.2012.10.019. [CrossRef] [Google Scholar]
- John C.B., Raja S.A. (2020) Analysis of combustion, emission and performance attributes of hemp biodiesel on a compression ignition engine, World Rev. Sci. Technol. Sustain. Dev. 16, 2, 169–183. https://doi.org/10.1504/WRSTSD.2020.109724. [CrossRef] [Google Scholar]
- Naeem M.Y., Corbo F., Crupi P., Clodoveo M.L. (2023) Hemp: An alternative source for various industries and an emerging tool for functional food and pharmaceutical sectors, Processes 11, 3, 718. https://doi.org/10.3390/pr11030718. [CrossRef] [Google Scholar]
- Ely K., Podder S., Reiss M., Fike J. (2022) Cannabis/hemp: Sustainable uses, opportunities, and current limitations, in Cannabis/Hemp for Sustainable Agriculture and Materials, pp. 59–87. https://link.springer.com/chapter/10.1007/978-981-16-8778-5_3. [CrossRef] [Google Scholar]
- Tripathi A., Kumar R. (2022) Industrial hemp for sustainable agriculture: A critical evaluation from global and Indian perspectives, in Cannabis/Hemp for Sustainable Agriculture and Materials, Springer Singapore, Singapore, pp. 29–57. [CrossRef] [Google Scholar]
- Ahmad M., Ullah K., Khan M.A., Zafar M., Tariq M., Ali S., Sultana S. (2011) Physicochemical analysis of hemp oil biodiesel: A promising non edible new source for bioenergy, Energy Sources A: Recovery Util. Environ. Eff. 33, 14, 1365–1374. https://doi.org/10.1080/15567036.2010.499420. [CrossRef] [Google Scholar]
- Yilbaşi Z., Yesilyurt M.K., Yaman H., Arslan M. (2022) The industrial-grade hemp (Cannabis sativa L.) seed oil biodiesel application in a diesel engine: combustion, harmful pollutants, and performance characteristics, Sci. Technol. Energy Transit. 77, 15. https://doi.org/10.2516/stet/2022011. [CrossRef] [Google Scholar]
- Capuano D., Costa M., Di Fraia S., Massarotti N., Vanoli L. (2017) Direct use of waste vegetable oil in internal combustion engines, Renew. Sustain. Energy Rev. 69, 759–770. https://doi.org/10.1016/j.rser.2016.11.016. [CrossRef] [Google Scholar]
- Sonthalia A., Kumar N. (2019) Hydroprocessed vegetable oil as a fuel for transportation sector: A review, J. Energy Inst. 92, 1, 1–17. https://doi.org/10.1016/j.joei.2017.10.008. [Google Scholar]
- Yaşar F. (2020) Comparision of fuel properties of biodiesel fuels produced from different oils to determine the most suitable feedstock type, Fuel 264, 116817. https://doi.org/10.1016/j.fuel.2019.116817. [CrossRef] [Google Scholar]
- Kharia P., Saini R., Kudapa V.K. (2023) A study on various sources and technologies for production of biodiesel and its efficiency, MRS Energy Sustain. 10, 1, 35–51. https://link.springer.com/article/10.1557/s43581-022-00058-4. [Google Scholar]
- Encinar J.M., Nogales S., González J.F. (2020) Biodiesel and biolubricant production from different vegetable oils through transesterification, Eng. Rep. 2, 12, e12190. https://doi.org/10.1002/eng2.12190. [CrossRef] [Google Scholar]
- Mishra V.K., Goswami R. (2018) A review of production, properties and advantages of biodiesel, Biofuels 9, 2, 273–289. https://doi.org/10.1080/17597269.2017.1336350. [Google Scholar]
- Hanif M.A., Nisar S., Akhtar M.N., Nisar N., Rashid N. (2018) Optimized production and advanced assessment of biodiesel: A review, Int. J. Energy Res. 42, 6, 2070–2083. https://doi.org/10.1002/er.3990. [CrossRef] [Google Scholar]
- Suraj C.K., Anand K., Sundararajan T. (2020) Investigation of biodiesel production methods by altering free fatty acid content in vegetable oils, Biofuels 11, 5, 587–595. https://doi.org/10.1080/17597269.2017.1378993. [CrossRef] [Google Scholar]
- Mandari V., Devarai S.K. (2021) Biodiesel production using homogeneous, heterogeneous, and enzyme catalysts via transesterification and esterification reactions: A critical review, BioEnergy Res. 15, 1–27. https://link.springer.com/article/10.1007/s12155-021-10333-w. [Google Scholar]
- Babadi A.A., Rahmati S., Fakhlaei R., Barati B., Wang S., Doherty W., Ostrikov K.K. (2022) Emerging technologies for biodiesel production: Processes, challenges, and opportunities, Biomass Bioenergy 163, 106521. https://doi.org/10.1016/j.biombioe.2022.106521. [CrossRef] [Google Scholar]
- Jahirul M.I., Koh W., Brown R.J., Senadeera W., O’Hara I., Moghaddam L. (2014) Biodiesel production from non-edible beauty leaf (Calophyllum inophyllum) oil: Process optimization using response surface methodology (RSM), Energies 7, 8, 5317–5331. https://doi.org/10.3390/en7085317. [CrossRef] [Google Scholar]
- Ahmed Elgharbawy A. (2021) Transesterification reaction conditions and low-quality feedstock treatment processes for biodiesel production – A review, J. Petrol. Mining Eng. 23, 1, 89–94. https://dx.doi.org/10.21608/jpme.2021.67482.1076. [Google Scholar]
- Soosai M.R., Moorthy I.M.G., Varalakshmi P., Yonas C.J. (2022) Integrated global optimization and process modelling for biodiesel production from non-edible silk-cotton seed oil by microwave-assisted transesterification with heterogeneous calcium oxide catalyst, J. Clean. Prod. 367, 132946. https://doi.org/10.1016/j.jclepro.2022.132946. [CrossRef] [Google Scholar]
- Xie W., Wan F. (2019) Immobilization of polyoxometalate-based sulfonated ionic liquids on UiO-66-2COOH metal-organic frameworks for biodiesel production via one-pot transesterification-esterification of acidic vegetable oils, Chem. Eng. J. 365, 40–50. https://doi.org/10.1016/j.cej.2019.02.016. [CrossRef] [Google Scholar]
- Aleman-Ramirez J.L., Okoye P.U., Torres-Arellano S., Paraguay-Delgado F., Mejía-López M., Moreira J., Sebastian P.J. (2022) Development of reusable composite eggshell-moringa leaf catalyst for biodiesel production, Fuel 324, 124601. https://doi.org/10.1016/j.fuel.2022.124601. [CrossRef] [Google Scholar]
- Gupta A.R., Jalan A.P., Rathod V.K. (2018) Solar energy as a process intensification tool for the biodiesel production from hempseed oil, Energy Conv. Manag. 171, 126–132. https://doi.org/10.1016/j.enconman.2018.05.050. [CrossRef] [Google Scholar]
- Anwar M., Rasul M.G., Ashwath N. (2018) Production optimization and quality assessment of papaya (Carica papaya) biodiesel with response surface methodology, Energy Convers. Manag. 156, 103–112. https://doi.org/10.1016/j.enconman.2017.11.004. [CrossRef] [Google Scholar]
- Islam M.S., Hart C.R., Casadonte D. (2022) Ultrasound-assisted solid Lewis acid-catalyzed transesterification of Lesquerella fendleri oil for biodiesel synthesis, Ultrason. Sonochem. 88, 106082. https://doi.org/10.1016/j.ultsonch.2022.106082. [CrossRef] [Google Scholar]
- Khan Z., Javed F., Shamair Z., Hafeez A., Fazal T., Aslam A., Zimmerman W.B., Rehman F. (2021) Current developments in esterification reaction: A review on process and parameters, J. Ind. Eng. Chem. 103, 80–101. https://doi.org/10.1016/j.jiec.2021.07.018. [CrossRef] [Google Scholar]
- Mulyatun M., Prameswari J., Istadi I., Widayat W. (2022) Production of non-food feedstock based biodiesel using acid-base bifunctional heterogeneous catalysts: A review, Fuel 314, 122749. https://doi.org/10.1016/j.fuel.2021.122749. [CrossRef] [Google Scholar]
- Singh N.K., Singh Y., Sharma A. (2022) Optimization of biodiesel synthesis from Jojoba oil via supercritical methanol: A response surface methodology approach coupled with genetic algorithm, Biomass Bioenergy 156, 106332. https://doi.org/10.1016/j.biombioe.2021.106332. [CrossRef] [Google Scholar]
- Tarigan J.B., Singh K., Sinuraya J.S., Supeno M., Sembiring H., Tarigan K., Sitepu E.K. (2022) Waste passion fruit peel as a heterogeneous catalyst for room-temperature biodiesel production, ACS Omega 7, 9, 7885–7892. https://doi.org/10.1021/acsomega.1c06785. [CrossRef] [PubMed] [Google Scholar]
- Yesilyurt M.K., Cesur C. (2022) A statistical optimization attempt by applying the Taguchi technique for the optimum transesterification process parameters in the production of biodiesel from Papaver somniferum L. seed oil, Fuel 329, 125406. https://doi.org/10.1016/j.fuel.2022.125406. [CrossRef] [Google Scholar]
- Elgharbawy A.S., Sadik W., Sadek O.M., Kasaby M.A. (2021) A review on biodiesel feedstocks and production technologies, J. Chil. Chem. Soc. 66, 1, 5098–5109. https://doi.org/10.4067/S0717-97072021000105098. [CrossRef] [Google Scholar]
- Dagdelen A., Yuksel Y. (2016) The effects of oilseed variety and transesterification method on biofuel production and quality, Nevsehir J. Sci. Technol. Spec. Issue 107–17. https://doi.org/10.17100/nevbiltek.210972. [Google Scholar]
- Dharma S.M.H.H., Masjuki H.H., Ong H.C., Sebayang A.H., Silitonga A.S., Kusumo F., Mahlia T.M.I. (2016) Optimization of biodiesel production process for mixed Jatropha curcas – Ceiba pentandra biodiesel using response surface methodology, Energy Convers. Manag. 115, 178–190. https://doi.org/10.1016/j.enconman.2016.02.034. [CrossRef] [Google Scholar]
- Ahmad T., Danish M., Kale P., Geremew B., Adeloju S.B., Nizami M., Ayoub M. (2019) Optimization of process variables for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations, Renew. Energy 139, 1272–1280. https://doi.org/10.1016/j.renene.2019.03.036. [CrossRef] [Google Scholar]
- Marwaha A., Rosha P., Mohapatra S.K., Mahla S.K., Dhir A. (2019) Biodiesel production from Terminalia bellerica using eggshell-based green catalyst: An optimization study with response surface methodology, Energy Rep. 5, 1580–1588. https://doi.org/10.1016/j.egyr.2019.10.022. [CrossRef] [Google Scholar]
- Danish M., Ahmad T., Ayoub M., Geremew B., Adeloju S. (2020) Conversion of flaxseed oil into biodiesel using KOH catalyst: Optimization and characterization dataset, Data Br. 29, 105225. https://doi.org/10.1016/j.dib.2020.105225. [CrossRef] [Google Scholar]
- Qu T., Niu S., Zhang X., Han K., Lu C. (2021) Preparation of calcium modified Zn-Ce/Al2O3 heterogeneous catalyst for biodiesel production through transesterification of palm oil with methanol optimized by response surface methodology, Fuel 284, 118986. https://doi.org/10.1016/j.fuel.2020.118986. [CrossRef] [Google Scholar]
- Almasi S., Najafi G., Ghobadian B., Jalili S. (2021) Biodiesel production from sour cherry kernel oil as novel feedstock using potassium hydroxide catalyst: Optimization using response surface methodology, Biocatal. Agric. Biotechnol. 35, 102089. https://doi.org/10.1016/j.bcab.2021.102089. [CrossRef] [Google Scholar]
- Karimi S., Saidi M. (2022) Biodiesel production from Azadirachta India-derived oil by electrolysis technique: Process optimization using response surface methodology (RSM), Fuel Process. Technol. 234, 107337. https://doi.org/10.1016/j.fuproc.2022.107337. [CrossRef] [Google Scholar]
- Kumar S., Deswal V. (2022) Optimization at low temperature transesterification biodiesel production from soybean oil methanolysis via response surface methodology, Energy Sources A: Recovery Util. Environ. Eff. 44, 1, 2284–2293. https://doi.org/10.1080/15567036.2019.1649331. [CrossRef] [MathSciNet] [Google Scholar]
- Kumar S. (2023) Application of response surface methodology for the optimisation of biodiesel production from Jatropha-algae oil blend, Int. J. Ambient Energy 44, 1, 1557–1562. https://doi.org/10.1080/01430750.2023.2179109. [CrossRef] [Google Scholar]
- Prodhan A., Hasan M.I., Sujan S.M.A., Hossain M., Quaiyyum M.A., Ismail M. (2020) Production and characterization of biodiesel from Jatropha (Jatropha curcas) seed oil available in Bangladesh, Energy Sources A: Recovery Util. Environ. Eff. 1–16. https://doi.org/10.1080/15567036.2020.1851819. [Google Scholar]
- Suzihaque M.U.H., Syazwina N., Alwi H., Ibrahim U.K., Abdullah S., Haron N. (2022) A sustainability study of the processing of kitchen waste as a potential source of biofuel: Biodiesel production from waste cooking oil (WCO), Mater. Today Proc. 63, S484–S489. https://doi.org/10.1016/j.matpr.2022.04.526. [CrossRef] [Google Scholar]
- Özgür C. (2021) Optimization of biodiesel yield and diesel engine performance from waste cooking oil by response surface method (RSM), Petrol. Sci. Technol. 39, 17–18, 683–703. https://doi.org/10.1080/10916466.2021.1954019. [Google Scholar]
- Pali H.S., Sharma A., Kumar N., Singh Y. (2021) Biodiesel yield and properties optimization from Kusum oil by RSM, Fuel 291, 120218. https://doi.org/10.1016/j.fuel.2021.120218. [CrossRef] [Google Scholar]
- Bai M.T., Swarna U., Raju C.A., Sridevi V. (2021) Production of methyl ester from mahua oil: Characterization and optimization by using RSM, Mater. Today Proc. 44, 1609–1616. https://doi.org/10.1016/j.matpr.2020.11.815. [CrossRef] [Google Scholar]
- Hashemzehi M., Pirouzfar V., Nayebzadeh H., Su C.H. (2022) Modelling and optimization of main independent parameters for biodiesel production over a Cu0.4Zn0.6Al2O4 catalyst using an RSM method, J. Chem. Technol. Biotechnol. 97, 1, 111–119. https://doi.org/10.1002/jctb.6916. [CrossRef] [Google Scholar]
- Karimi K., Saidi M., Moradi P., Taheri Najafabadi A. (2023) Biodiesel production from Nannochloropsis microalgal biomass-derived oil: An experimental and theoretical study using the RSM-CCD approach, Can. J. Chem. Eng. https://doi.org/10.1002/cjce.24863. [Google Scholar]
- Pali H.S., Sharma A., Kumar M., Annakodi V.A., Singh N.K., Singh Y., Nguyen P.Q.P. (2023) Enhancement of combustion characteristics of waste cooking oil biodiesel using TiO2 nanofluid blends through RSM, Fuel 331, 125681. https://doi.org/10.1016/j.fuel.2022.125681. [CrossRef] [Google Scholar]
- Manojkumar N., Muthukumaran C., Sharmila G. (2022) A comprehensive review on the application of response surface methodology for optimization of biodiesel production using different oil sources, J. King Saud Univ. Eng. Sci. 34, 3, 198–208. https://doi.org/10.1016/j.jksues.2020.09.012. [Google Scholar]
- Kokkinos N., Lazaridou A., Stamatis N., Orfanidis S., Mitropoulos A.C., Christoforidis A., Nikolaou N. (2015) Biodiesel production from selected microalgae strains and determination of its properties and combustion specific characteristics, J. Eng. Sci. Technol. Rev. 8, 4, 1–6. https://pdfs.semanticscholar.org/b44b/15dad6a98d24b82f70b95e5ed2757cf1e8f0.pdf. [CrossRef] [Google Scholar]
- Abdulvahitoğlu A. (2019) Predicted fuel characteristics of prunus avium seed oil as a candidate for biodiesel production, Int. J. Automot. Eng. Technol. 8, 4, 165–171. https://doi.org/10.18245/ijaet.625754. [Google Scholar]
- Yesilyurt M.K., Cesur C. (2020) Biodiesel synthesis from Styrax officinalis L. seed oil as a novel and potential non-edible feedstock: A parametric optimization study through the Taguchi technique, Fuel 265, 117025. https://doi.org/10.1016/j.fuel.2020.117025. [CrossRef] [Google Scholar]
- Mofijur M., Ahmed S.F., Rony Z.I., Khoo K.S., Chowdhury A.A., Kalam M.A., Khan T.Y. (2023) Screening of non-edible (second-generation) feedstocks for the production of sustainable aviation fuel, Fuel 331, 125879. https://doi.org/10.1016/j.fuel.2022.125879. [CrossRef] [Google Scholar]
- Venkatesan H., Sivamani S. (2022) Evaluating the predicting capability of response surface methodology on biodiesel production from grape seed bio-oil, Energy Sources A: Recovery Util. Environ. Eff. 44, 1, 2473–2488. https://doi.org/10.1080/15567036.2019.1649759. [CrossRef] [Google Scholar]
- Marri V.B., Kotha M.M., Gaddale A.P.R. (2022) Production process optimisation of Sterculia foetida methyl esters (biodiesel) using response surface methodology, Int. J. Ambient Energy 43, 1, 1837–1846. https://doi.org/10.1080/01430750.2020.1723692. [CrossRef] [Google Scholar]
- Kumar P., Kumar N. (2021) Process optimization for production of biodiesel from orange peel oil using response surface methodology, Energy Sources A: Recovery Util. Environ. Eff. 43, 6, 727–737. https://doi.org/10.1080/15567036.2019.1631909. [CrossRef] [Google Scholar]
- Hoseini S.S., Najafi G., Ghobadian B., Mamat R., Ebadi M.T., Yusaf T. (2018) Ailanthus altissima (tree of heaven) seed oil: Characterisation and optimisation of ultrasonication-assisted biodiesel production, Fuel 220, 621–630. https://doi.org/10.1016/j.fuel.2018.01.094. [CrossRef] [Google Scholar]
- Bhuiya M.M.K., Rasul M.G., Khan M.M.K., Ashwath N. (2020) Biodiesel production and characterisation of poppy (Papaver somniferum L.) seed oil methyl ester as a source of 2nd generation biodiesel feedstock, Ind. Crops Prod. 152, 112493. https://doi.org/10.1016/j.indcrop.2020.112493. [CrossRef] [Google Scholar]
- Saravanan A., Kings A.J., Miriam L.M., Isaac R.R. (2022) RSM-based comparative experimental study of sustainable biodiesel synthesis from different 2G feedstocks using magnetic nanocatalyst CaFe2O4, Environ. Dev. Sustain. 26, 2, 1–30. https://link.springer.com/article/10.1007/s10668-022-02761-1. [Google Scholar]
- Yilbaşi Z., Yesilyurt M.K., Arslan M. (2023) The production of methyl ester from industrial grade hemp (Cannabis sativa L.) seed oil: a perspective of Turkey – the optimization study using the Taguchi method, Biomass Convers. Biorefin. 13, 11, 9955–9975. https://link.springer.com/article/10.1007/s13399-021-01751-z. [CrossRef] [Google Scholar]
- Niyas M.M., Shaija A. (2022) Effect of repeated heating of coconut, sunflower, and palm oils on their fatty acid profiles, biodiesel properties and performance, combustion, and emission, characteristics of a diesel engine fueled with their biodiesel blends, Fuel 328, 125242. https://doi.org/10.1016/j.fuel.2022.125242. [CrossRef] [Google Scholar]
- Perveen S., Hanif M.A., Nadeem R., Rashid U., Azeem M.W., Zubair M., Moser B.R. (2021) A novel route of mixed catalysis for production of fatty acid methyl esters from potential seed oil sources, Catalysts 11, 7, 811. https://doi.org/10.3390/catal11070811. [CrossRef] [Google Scholar]
- Bolonio D., García-Martínez M.J., Ortega M.F., Lapuerta M., Rodríguez-Fernández J., Canoira L. (2019) Fatty acid ethyl esters (FAEEs) obtained from grapeseed oil: A fully renewable biofuel, Renew. Energy 132, 278–283. https://doi.org/10.1016/j.renene.2018.08.010. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.