Table 4

Comparison of proposed FedDNN and FedLSTM models with existing models in terms of mean squared error.

Algorithm C1 C2 C3 C4 C5 C6 C7 C8 Average
LinearRegression 134.12 ± 2.50 154.23 ± 2.43 161.34 ± 1.39 144.80 ± 1.49 144.11 ± 1.47 173.59 ± 2.74 133.68 ± 2.12 154.94 ± 2.16 150.10 ± 2.04
LGBMRegressor 26.43 ± 1.29 22.54 ± 2.81 23.15 ± 2.05 16.44 ± 2.20 16.37 ± 1.06 24.34 ± 1.60 24.56 ± 2.61 24.56 ± 2.76 22.30 ± 2.05
XGBRegressor 27.16 ± 2.50 25.22 ± 2.26 24.45 ± 1.25 16.43 ± 2.42 15.29 ± 1.53 23.45 ± 2.33 23.43 ± 1.15 23.43 ± 1.61 22.36 ± 1.88
CatBoostRegressor 26.64 ± 1.10 24.54 ± 2.14 25.65 ± 2.02 17.30 ± 2.74 13.32 ± 1.67 22.65 ± 1.73 24.35 ± 2.92 24.23 ± 2.24 22.33 ± 2.07
SGDRegressor 137.25 ± 1.28 153.23 ± 2.73 164.13 ± 2.74 146.73 ± 2.69 143.12 ± 2.39 171.23 ± 1.91 133.34 ± 1.37 154.45 ± 2.17 150.44 ± 2.16
KernelRidge 143.64 ± 2.95 165.75 ± 1.12 171.56 ± 1.66 152.51 ± 1.47 151.74 ± 2.15 182.43 ± 2.51 142.54 ± 2.37 165.56 ± 2.23 159.47 ± 2.06
BayesianRidge 134.17 ± 1.13 151.34 ± 2.35 163.53 ± 1.86 143.43 ± 2.65 144.11 ± 1.84 171.45 ± 2.95 132.34 ± 2.97 153.34 ± 2.39 149.21 ± 2.27
GradientBoostingRegressor 33.85 ± 2.54 28.62 ± 1.79 31.72 ± 2.81 22.37 ± 2.80 23.34 ± 2.37 34.34 ± 1.67 31.34 ± 2.06 32.65 ± 2.83 29.78 ± 2.36
SVR
135.34 ± 4.69
156.35 ± 2.86
165.15 ± 2.83
141.54 ± 1.58
142.12 ± 2.97
171.34 ± 1.58
133.45 ± 1.79
156.58 ± 2.49
150.23 ± 2.60
DNN 24.35 ± 2.01 24.56 ± 2.00 24.67 ± 2.97 16.23 ± 2.96 15.57 ± 1.73 25.07 ± 1.62 23.52 ± 1.00 23.53 ± 1.21 22.19 ± 1.94
FedDNN-full 23.62 ± 2.64 22.42 ± 1.43 23.73 ± 2.69 14.34 ± 2.60 15.24 ± 1.49 24.67 ± 1.48 22.87 ± 2.01 22.72 ± 2.50 21.20 ± 2.11
FedDNN-par
21.58 ± 1.61
17.15 ± 2.75
22.25 ± 1.46
11.24 ± 1.19
12.64 ± 1.69
23.96 ± 2.44
22.30 ± 2.75
20.32 ± 1.63
18.93 ± 1.94
LSTM 31.15 ± 2.61 22.93 ± 1.13 25.14 ± 1.24 16.45 ± 2.77 15.52 ± 2.30 24.46 ± 1.60 23.15 ± 2.83 23.37 ± 2.32 22.77 ± 2.10
FedLSTM-full 28.64 ± 2.29 22.56 ± 1.78 24.56 ± 1.46 14.34 ± 1.91 14.13 ± 1.13 22.58 ± 2.09 22.75 ± 1.75 22.67 ± 2.14 21.53 ± 1.82
FedLSTM-par 19.23 ± 2.75 18.15 ± 1.25 23.65 ± 2.70 12.22 ± 1.54 13.34 ± 1.71 19.49 ± 1.56 21.32 ± 2.90 19.15 ± 1.84 18.32 ± 2.03

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.