Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 80, 2025
Innovative Strategies and Technologies for Sustainable Renewable Energy and Low-Carbon Development
|
|
---|---|---|
Article Number | 44 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.2516/stet/2025024 | |
Published online | 08 July 2025 |
- Wang C., Lv C., Li P., Song G., Li S., Xu X., Wu J. (2018) Modeling and optimal operation of community integrated energy systems: a case study from China, Appl. Energy 230, 1242–1254. [CrossRef] [Google Scholar]
- Van Tran H. (2024) Asymmetric role of economic growth, globalization, green growth, and renewable energy in achieving environmental sustainability, Emerg. Sci. J. 8, 449–462. [CrossRef] [Google Scholar]
- Cruz-Pérez N., Rodríguez Alcántara J.S., Koronaiou V.L., Jančula A., Rodríguez-Martín J., García Gil A., Fontes J.C., Santamarta J.C. (2024) SWOT analysis of the benefits of hydropower energy in four archipelagos, Civ. Eng. J. 10, 2370–2383. [CrossRef] [Google Scholar]
- Koestoer R.H., Ligayanti T., Kartohardjono S., Susanto H. (2024) Down-streaming small-scale green ammonia to nitrogen-phosphorus fertilizer tablets for rural communities, Emerg. Sci. J. 8, 625–643. [CrossRef] [Google Scholar]
- Good N. (2019) Using behavioural economic theory in modelling of demand response, Appl. Energy 239, 107–116. [CrossRef] [Google Scholar]
- Liu X. (2023) Bi-layer game method for scheduling of virtual power plant with multiple regional integrated energy systems, Int. J. Electr. Power Energy Syst. 149, 109063. [Google Scholar]
- Chen X., Yang L., Dong W., Yang Q. (2024) Net-zero carbon emission oriented bi-level optimal capacity planning of integrated energy system considering carbon capture and hydrogen facilities, Renew. Energ 237, 121624. [Google Scholar]
- Wang Y., Ma Y., Song F., Ma Y., Qi C., Huang F., Xing J., Zhang F. (2024) Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response, Energy 205, 118022. [Google Scholar]
- Li C.Y., Chen X., Zhang P., Zhang Q. (2018) Multi-time-scale demand response dispatch considering wind power forecast error, Power Syst. Technol. 42, 487–494. [Google Scholar]
- Zhang L.H., He H., Li Q.Y., Jiao Y., Tan Z.F. (2017) A bi-level stochastic scheduling optimization model for virtual power plant connecting with wind-photovoltaic-gas-energy storage system with considering uncertainty and demand response, Appl. Energy 171, 184–199. [Google Scholar]
- Yang P., Jiang H., Liu C., Kang C., Wang C. (2023) Coordinated optimization scheduling operation of integrated energy system considering demand response and carbon trading mechanism, Int. J. Electr. Power Energy Syst. 147, 108902. [Google Scholar]
- Zhang G., Niu Y., Xie T., Zhang K. (2023) Multi-level distributed demand response study for a multi-park integrated energy system, Energy Rep. 9, 2676–2689. [CrossRef] [Google Scholar]
- Yang J., Yang M., Ma K., Dou C., Ma T. (2024) Distributed optimization of integrated energy system considering demand response and congestion cost allocation mechanism, Int. J. Electr. Power Energy Syst. 157, 109865. [Google Scholar]
- Luo Y., Yang S., Niu C., Hua Z., Zhang S. (2024) A multi-objective dual dynamic genetic algorithm-based approach for thermoelectric optimization of integrated urban energy systems, Energy Rep. 12, 4175–4183. [CrossRef] [Google Scholar]
- Qian J., Guo Y., Wu D., Liu A., Han Z., Liu Z., Zhang S., Yang X. (2024) Research on multi-time scale optimization of integrated energy system based on multiple energy storage, J. Energy Storage 102, 113892. [Google Scholar]
- MacCarty N.A., Bryden K.M. (2016) An integrated systems model for energy services in rural developing communities, Energy 113, 536–557. [CrossRef] [Google Scholar]
- He J., Li Y., Li H., Tong H., Yuan Z., Yang X., Huang W. (2020) Application of game theory in integrated energy system systems: a review, IEEE Access 8, 93380–93397. [Google Scholar]
- Peng Q., Wang X., Kuang Y., Wang Y., Zhao H., Wang Z., Lyu J. (2021) Hybrid energy sharing mechanism for integrated energy systems based on the Stackelberg game, CSEE J. Power Energy Syst. 7, 911–921. [Google Scholar]
- Wei F., Jing Z.X., Wu P.Z., Wu Q.H. (2017) A Stackelberg game approach for multiple energies trading in integrated energy systems, Appl. Energy 200, 315–329. [CrossRef] [Google Scholar]
- Wang Y., Jin Z., Liang J., Li Z., Dinavahi V., Liang J. (2024) Low-carbon optimal scheduling of park-integrated energy system based on bidirectional Stackelberg-Nash game theory, Energy 305, 132342. [CrossRef] [Google Scholar]
- Fu Y., Sun Q., Wennersten R., Pang X., Liu W. (2024) Interactive scheduling optimization of regional multi-agent integrated energy systems considering uncertainties based on game theory, J. Clean. Prod. 449, 141697. [Google Scholar]
- Chen C., Liu C., Ma L., Chen T., Wei Y., Qiu W., Lin Z., Li Z. (2023) Cooperative-game-based joint planning and cost allocation for multiple park-level integrated energy systems with shared energy storage, J. Energy Storage 73, 108861. [Google Scholar]
- Liang N., He X., Tan J., Pan Z., Zheng F. (2023) Stackelberg game-based optimal scheduling for multi-community integrated energy systems considering energy interaction and carbon trading, Int. J. Electr. Power Energy Syst. 153, 109360. [Google Scholar]
- Huo S., Li Q., Pu Y., Xie S., Chen W. (2024) Low carbon dispatch method for hydrogen-containing integrated energy system considering seasonal carbon trading and energy sharing mechanism, Energy 308, 132794. [CrossRef] [Google Scholar]
- Chu X., Fu L., Liu Q., Yu S. (2024) Optimal allocation method of oxygen enriched combustion-carbon capture low-carbon integrated energy system considering uncertainty of carbon-source-load, Int. J. Electr. Power Energy Syst. 162, 110220. [Google Scholar]
- Yang J., Zhao B., Ma K., Zhong J., Xu W. (2024) A carbon integrated energy pricing strategy based on non-cooperative game for energy hub in seaport energy system, Energy 309, 133009. [CrossRef] [Google Scholar]
- Gao M., Xiang L., Zhu S., Lin Q. (2024) Scenario probabilistic data-driven two-stage robust optimal operation strategy for regional integrated energy systems considering ladder-type carbon trading, Renew. Energy 237, 121722. [Google Scholar]
- Wang H., Zhao A., Khan M.Q., Sun W. (2024) Optimal operation of energy hub considering reward-punishment ladder carbon trading and electrothermal demand coupling, Energy 286, 129571. [CrossRef] [Google Scholar]
- Luo Y., Hao H., Yang D., Zhou B. (2024) Multi-objective optimization of integrated energy systems considering ladder-type carbon emission trading and refined load demand response, J. Mod. Power Syst. Clean Enegy 12, 828–839. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.