Issue |
Sci. Tech. Energ. Transition
Volume 80, 2025
Emerging Advances in Hybrid Renewable Energy Systems and Integration
|
|
---|---|---|
Article Number | 16 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.2516/stet/2024095 | |
Published online | 27 January 2025 |
- Tufa R.A., Rugiero E., Chanda D., Hnàt J., van Baak W., Veerman J., Fontananova E., Di Profio G., Drioli E., Bouzek K., Curcio E. (2016) Salinity gradient power-reverse electrodialysis and alkaline polymer electrolyte water electrolysis for hydrogen production. J. Memb. Sci. 514, 155–164. [CrossRef] [Google Scholar]
- Wick G.L., Schmitt W.R. (1977) Prospects for renewable energy from the sea. Mar. Technol. Soc. J. 11, 16–21. [Google Scholar]
- Weinstein J.N., Leitz F.B. (1976) Electric power from differences in salinity: the dialytic battery. Science 191, 557–559. [CrossRef] [PubMed] [Google Scholar]
- Palenzuela P., Micari M., Ortega-delgado B., Giacalone F., Zaragoza G., Alarcón-Padilla D.-C., Cipollina A., Tamburinia A., Micale G.M. (2018) Performance analysis of a RED-MED salinity gradient heat engine. Energies 11, 3385. [CrossRef] [Google Scholar]
- Micari M., Cipollina A., Giacalone F., Kosmadakis G., Papapetrou M., Zaragoza G., Micale G., Tamburini A. (2019) Towards the first proof of the concept of a reverse electrodialysis – membrane distillation heat engine. Desalination 453, 77–88. [CrossRef] [Google Scholar]
- Olkis C., Santori G., Brandani S. (2018) An adsorption reverse electrodialysis system for the generation of electricity from low-grade heat. Appl. Energy 231, 222–234. [CrossRef] [Google Scholar]
- Brogioli D., La Mantia F., Yip N.Y. (2019) Energy efficiency analysis of distillation for thermally regenerative salinity gradient power technologies. Renew. Energy 133, 1034–1045. [CrossRef] [Google Scholar]
- Giacalone F., Olkis C., Santori G., Cipollina A., Brandani S., Micale G. (2019) Novel solutions for closed-loop reverse electrodialysis: thermodynamic characterization and perspective analysis. Energy 166, 674–689. [CrossRef] [Google Scholar]
- Hu J., Xu S., Wu X., Wu D., Jin D., Wang P., Leng Q. (2018) Theoretical simulation and evaluation for the performance of the hybrid multi-effect distillation – reverse electrodialysis power generation system. Desalination 443, 172–183. [CrossRef] [Google Scholar]
- Long R., Li B., Liu Z., Liu W. (2017) Hybrid membrane distillation-reverse electrodialysis electricity generation system to harvest low-grade thermal energy. J. Memb. Sci. 525, 107–115. [CrossRef] [Google Scholar]
- Tamburini A., Tedesco M., Cipollina A., Micale G., Ciofalo M., Papapetrou M., Van Baak W., Piacentino A. (2017) Reverse electrodialysis heat engine for sustainable power production. Appl. Energy. 206, 1334–1353. [CrossRef] [Google Scholar]
- Galama A.H., Vermaas D.A., Veerman J., Saakes M., Rijnaarts H.H.M., Post J.W., Nijmeijer K. (2014) Membrane resistance: the effect of salinity gradients over a cation exchange membrane. J. Memb. Sci. 467, 279–291. [CrossRef] [Google Scholar]
- Watson V.J., Hatzell M., Logan B.E. (2015) Bioresource technology hydrogen production from continuous flow, microbial reverse-electrodialysis electrolysis cells treating fermentation wastewater. Bioresour. Technol. 195, 51–56. [CrossRef] [Google Scholar]
- Song Y., Hidayat S., Kim H., Park J. (2016) Bioresource technology hydrogen production in microbial reverse-electrodialysis electrolysis cells using a substrate without buffer solution. Bioresour. Technol. 210, 56–60. [CrossRef] [Google Scholar]
- Nam J., Logan B.E. (2011) Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell. Int. J. Hydrogen Energy. 36, 15105–15110. [CrossRef] [Google Scholar]
- Luo X., Nam J.Y., Zhang F., Zhang X., Liang P., Huang X., Logan B.E. (2013) Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions. Bioresour. Technol. 140, 399–405. [CrossRef] [Google Scholar]
- Hu J., Xu S., Wu X., Wu D., Jin D., Leng Q. (2019) Multi-stage reverse electrodialysis: strategies to harvest salinity gradient energy. Energy Convers. Manag. 183, 803–815. [CrossRef] [Google Scholar]
- Tian H., Wang Y., Pei Y., Crittenden J.C. (2020) Unique applications and improvements of reverse electrodialysis: A review and outlook. Appl. Energy 262, 114482. [CrossRef] [Google Scholar]
- Tedesco M., Cipollina A., Tamburini A., Bogle I.D.L., Micale G. (2015) A simulation tool for analysis and design of reverse electrodialysis using concentrated brines. Chem. Eng. Res. Des. 93, 441–456. [CrossRef] [Google Scholar]
- Aricò A.S., Siracusano S., Briguglio N., Baglio V., Blasi A.D., Antonucci V. (2013) Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources. J. Appl. Electrochem. 43, 107–118. [CrossRef] [Google Scholar]
- Hatzell M.C., Ivanov I., Cusick R.D., Zhu X., Logan B.E. (2014) Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems. Phys. Chem. Chem. Phys. 16, 1632–1638. [CrossRef] [PubMed] [Google Scholar]
- Giacalone F., Catrini P., Tamburini A., Cipollina A., Piacentino A., Micale G. (2018) Exergy analysis of reverse electrodialysis. Energy Convers. Manag. 164, 588–602. [CrossRef] [Google Scholar]
- Micari M., Bevacqua M., Cipollina A., Tamburini A., Van Baak W., Putts T., Micale G. (2018) Effect of different aqueous solutions of pure salts and salt mixtures in reverse electrodialysis systems for closed-loop applications. J. Memb. Sci. 551, 315–325. [CrossRef] [Google Scholar]
- Long R., Li B., Liu Z., Liu W. (2018) Performance analysis of reverse electrodialysis stacks: channel geometry and flow rate optimization. Energy 158, 427–436. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.