Issue
Sci. Tech. Energ. Transition
Volume 80, 2025
Innovative Strategies and Technologies for Sustainable Renewable Energy and Low-Carbon Development
Article Number 15
Number of page(s) 8
DOI https://doi.org/10.2516/stet/2024103
Published online 27 January 2025
  • Raihan A., Pavel M.I., Muhtasim D.A., Farhana S., Faruk O., Paul A. (2023) The role of renewable energy use, technological innovation, and forest cover toward green development: evidence from Indonesia, Innov Green Dev. 2, 1, 1–12. [Google Scholar]
  • Suwarno C., CI S., Dewi A.A., Pinayungan D. (2023) Comparative analysis of wind speed and energy potential assessment of two distribution models in Medan, Indonesia, Int Rev Electr Eng. 18, 4, 275–282. [Google Scholar]
  • Napitupulu J., Suwarno S., Cahyadi C.I., Sukarwoto S. (2024) Evaluation and modeling of green energy consumption in North Sumatra, Indonesia, Int. J. Energy Econ. Policy 14, 1, 570–578. [CrossRef] [Google Scholar]
  • Jaiswal K.K., Chowdhury C.R., Yadav D., Verma R., Dutta S., Jaiswal K.S., Karuppasamy K.S.K. (2022) Renewable and sustainable clean energy development and impact on social, economic, and environmental health, Energy Nexus 7, 100118. [CrossRef] [Google Scholar]
  • Dai Q., Huo X., Su D., Cui Z. (2023) Photovoltaic power prediction based on sky images and tokens-to-token vision transformer, Int. J. Renew. Energy Dev. 12, 6, 1104–1112. [CrossRef] [MathSciNet] [Google Scholar]
  • Saleh H.M., Hassan A.I. (2024) The challenges of sustainable energy transition: a focus on renewable energy, Appl. Chem. Eng. 7, 2, 2084. [CrossRef] [Google Scholar]
  • Kara T., Şahin A.D. (2023) Implications of climate change on wind energy potential, Sustainability 15, 20, 14822. [CrossRef] [Google Scholar]
  • Olabi A.G., Obaideen K., Abdelkareem M.A., AlMallahi M.N., Shehata N., Alami A.H., Mdallal A., Hassan A.A.M., Sayed E.T. (2023) Wind energy contribution to the sustainable development goals: case study on London array, Sustainability 15, 5, 4641. [CrossRef] [Google Scholar]
  • Qatrunnada A.A., Ikhsan W.A., Kurniawati W. (2023) The important role of kinetic energy in supporting sustainable tchnological development, Int J Technol Sci. 1, 4, 14–20. [Google Scholar]
  • Bashir M.B.A. (2022) Principle parameters and environmental impacts that affect the performance of wind turbine: an overview, Arab J Sci Eng. 47, 7, 7891–7909. [CrossRef] [PubMed] [Google Scholar]
  • Ullah F., Zhang X., Khan M., Mastoi M.S., Munir H.M., Flah A., Said Y. (2024) A comprehensive review of wind power integration and energy storage technologies for modern grid frequency regulation, Heliyon 10, 9, 1–24. [Google Scholar]
  • Gwabavu M., Raji A. (2021) Dynamic control of integrated wind farm battery energy storage systems for grid connection, Sustainability 13, 6, 1–27. [Google Scholar]
  • Hu X., Jaraitė J., Kažukauskas A. (2021) The effects of wind power on electricity markets: A case study of the Swedish intraday market, Energy Econ. 96, 1–16. [Google Scholar]
  • Yan J., Möhrlen C., Göçmen T., Kelly M., Wessel A., Giebel G. (2022) Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain, Renew. Sustain. Energy Rev. 165, 1–31. [Google Scholar]
  • Liu Y., Peng M. (2024) Research on peak load shifting for hybrid energy system with wind power and energy storage based on situation awareness, J. Energy Storage 82, 110472. [CrossRef] [Google Scholar]
  • Veers P., Bottasso C.L., Manuel L., Naughton J., Pao L., Paquette J., Robertson A., Robinson M., Ananthan S., Barlas T., Bianchini A. (2023) Grand challenges in the design, manufacture, and operation of future wind turbine systems, Wind Energy Sci. 8, 7, 1071–1131. [CrossRef] [Google Scholar]
  • Cendrawati D.G., Hesty N.W., Pranoto B., Kuncoro A.H., Fudholi A. (2023) Short-term wind energy resource prediction using weather research forecasting model for a location in indonesia, Int. J. Technol. 14, 3, 584–595. [CrossRef] [Google Scholar]
  • Pasaribu F.I., Cahyadi C.I., Mujiono R., Suwarno S. (2023) Analysis of the effect of economic, population, and energy growth, as well as the influence on sustainable energy development in Indonesia, Int. J. Energy Econ. Policy. 13, 1, 510–517. [CrossRef] [Google Scholar]
  • Gonzalez F.J. (2023) Determination of the characteristic curves of a nonlinear frst order system from Fourier analysis, Sci. Rep. 13, 1955. [CrossRef] [Google Scholar]
  • Amato F., Guignard F., Walch A., Mohajeri N., Scartezzini J.-L., Kanevski M. (2022) Spatio-temporal estimation of wind speed and wind power using extreme learning machines: predictions, uncertainty and technical potential, Stoch. Environ. Res. Risk Assessmen 36, 8, 2049–2069. [CrossRef] [PubMed] [Google Scholar]
  • Lee K., Park B., Kim J., Hong J. (2024) Day-ahead wind power forecasting based on feature extraction integrating vertical layer wind characteristics in complex terrain, Energy 288, 1–13. [Google Scholar]
  • Sasser C., Yu M., Delgado R. (2022) Improvement of wind power prediction from meteorological characterization with machine learning models, Renew. Energy. 183, 491–501. [CrossRef] [Google Scholar]
  • Paraschiv L., Paraschiv S. (2023) Contribution of renewable energy (hydro, wind, solar and biomass) to decarbonization and transformation of the electricity generation sector for sustainable development, Energy Rep. 9, 9, 535–544. [CrossRef] [Google Scholar]
  • Altin C. (2024) Investigation of the effects of synthetic wind speed parameters and wind speed distribution on system size and cost in hybrid renewable energy system design, Renew Sustain Energy Rev. 197, 114420. [CrossRef] [Google Scholar]
  • Han Y., Mi L., Shen L., Cai C.S., Liu Y., Li K., Xu G. (2022) A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting, Appl. Energy 312, 118777. [CrossRef] [Google Scholar]
  • Chellali F. (2023) Short-term wind forecasting in Adrar, Algeria, using a combined system, Eng. Poceed. 29, 1, 1–9. [Google Scholar]
  • Li S., Xie Q., Yang J. (2022) Daily suspended sediment forecast by an integrated dynamic neural network, J. Hydology. 604, 127258. [CrossRef] [Google Scholar]
  • Sahoo I., Guinness J., Reich B.J. (2023) Estimating atmospheric motion winds from satellite image data using space-time drift models, Environmetrics 34, 8, e2818. [CrossRef] [MathSciNet] [Google Scholar]
  • Ali M., Prasad R., Xiang Y., Sankaran A., Deo R.C., Xiao F., Zhu S. (2021) Advanced extreme learning machines vs. deep learning models for peak wave energy period forecasting: a case study in Queensland, Australia, Renew. Energy 177, 1031–1044. [CrossRef] [Google Scholar]
  • Wang T., Noori M., Altabey W.A., Wu Z., Ghiasi R., Kuok S.-C., Silik A., Farhan N.S.D., Sarhosis V., Farsangi E.N. (2023) From model-driven to data-driven: a review of hysteresis modeling in structural and mechanical systems, Mech. Syst. Signal Process 204, 1–39. [Google Scholar]
  • Raiaan M.A.K., Sakib S., Fahad N.M., Al Mamun A., Rahman M.A., Shatabda S., Mukta M.S.H. (2024) A systematic review of hyperparameter optimization techniques in convolutional neural networks, Decis. Anal. J. 11, 1–32. [Google Scholar]
  • Benti N.E., Chaka M.D., Semie A.G. (2023) Forecasting renewable energy generation with machine learning and deep learning: current advances and future prospects, Sustainability 15, 9, 1–33. [Google Scholar]
  • Leme Beu C.M., Landulfo E. (2024) Machine-learning-based estimate of the wind speed over complex terrain using the long short-term memory (LSTM) recurrent neural network, Wind Energy Sci. 9, 6, 1431–1450. [CrossRef] [Google Scholar]
  • Mu G., Liao Z., Li J., Qin N., Yang Z. (2023) IPSO-LSTM hybrid model for predicting online public opinion trends in emergencies, PLoS One 18, 10, e0292677. [CrossRef] [PubMed] [Google Scholar]
  • Zhang Z., Wang J., Wei D., Luo T., Xia Y. (2023) A novel ensemble system for short-term wind speed forecasting based on two-stage attention-based recurrent neural network, Renew. Energy 204, 11–23. [CrossRef] [Google Scholar]
  • Shang X.Q., Huang T.-L., Chen H.-P., Ren W.-X., Lou M.-L. (2023) Recursive variational mode decomposition enhanced by orthogonalization algorithm for accurate structural modal identification, Mech. Syst. Signal Process. 197, 110358. [CrossRef] [Google Scholar]
  • Alkhayat G., Hasan S.H., Mehmood R. (2023) A hybrid model of variational mode decomposition and long short-term memory for next-hour wind speed forecasting in a hot desert climate, Sustainability 15, 24, 1–39. [Google Scholar]
  • Zhang S., Zhu C., Guo X. (2024) Wind-speed multi-step forecasting based on variational mode decomposition, temporal convolutional network, and transformer model, Energies 17, 9, 1–22. [Google Scholar]
  • Nazari M., Sakhaei S.M. (2020) Successive variational mode decomposition, Signal Processing 174, 107610. [CrossRef] [Google Scholar]
  • Liu S., Yu K. (2022) Successive multivariate variational mode decomposition based on instantaneous linear mixing model, Signal Processing 190, 108311. [CrossRef] [Google Scholar]
  • Ma H., Xu Y., Wang J., Song M., Zhang S. (2023) SVMD coupled with dual-threshold criteria of correlation coefficient: A self-adaptive denoising method for ship-radiated noise signal, Ocean Eng. 281, 114931. [CrossRef] [Google Scholar]
  • Safitri L.R., Chamidah N., Saifudin T., Alpandi G.T. (2023) Comparison of kernel support vector machine in stroke risk classification (case study: IFLS data), Proc. Int. Conf. Data Sci. Off. Statistics 2023, 1, 309–316. [Google Scholar]
  • Wang H.Q., Sun F.C., Cai Y.N., Ding L.G., Chen N. (2010) An unbiased LSSVM model for classification and regression, Soft Comput. 14, 171–180. [CrossRef] [Google Scholar]
  • Yu G.-R., Chang Y.-D., Lee W.-S. (2024) Maximum power point tracking of photovoltaic generation system using improved quantum-behavior particle swarm optimization, Biomimetrics 9, 4, 1–24. [Google Scholar]
  • Demirtop A., Sevli O. (2024) Wind speed prediction using LSTM and ARIMA time series analysis models: a case study of Gelibolu, Turkish J. Eng. 8, 3, 524–536. [CrossRef] [Google Scholar]
  • Parvej Y., Shaahid S.M. (2021) Univariate time series prediction of wind speed with a case study of Yanbu, Saudi Arabia, Int. J. Adv. Trends Comput. Sci. Eng. 10, 1, 257–264. [CrossRef] [Google Scholar]
  • Zhen Z., Qiu G., Mei S., Wang F., Zhang X., Yin R., Li Y., Osório G.J., Shafie-Khah M., Catalão J.P. (2022) An ultra-short-term wind speed forecasting model based on time scale recognition and dynamic adaptive modeling, Int. J. Electr. Power Energy Syst. 135, 107502. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.