Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 80, 2025
|
|
---|---|---|
Article Number | 13 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.2516/stet/2024107 | |
Published online | 27 January 2025 |
- Neuwirth M., Fleiter T., Manz P., Hofmann R. (2022) The future potential hydrogen demand in energy-intensive industries – a site-specific approach applied to Germany, Energy Convers. Manag. 252, 115052. https://doi.org/10.1016/j.enconman.2021.115052. [CrossRef] [Google Scholar]
- Moritz M., Schonfisch M., Schulte S. (2023) Estimating global production and supply costs for green hydrogen and hydrogen-based green energy commodities, Int. J. Hydrogen Energy 48, 9139–9154. https://doi.org/10.1016/j.ijhydene.2022.12.046. [CrossRef] [Google Scholar]
- Egerer J., Farhang-Damghani N., Grimm V., Runge P. (2024) The industry transformation from fossil fuels to hydrogen will reorganize value chains: big picture and case studies for Germany, Appl. Energy 358, 122485. https://doi.org/10.1016/j.apenergy.2023.122485. [CrossRef] [Google Scholar]
- Bach H., Bergek A., Bjørgum Ø., Hansen T., Kenzhegaliyeva A., Steen M. (2020) Implementing maritime battery-electric and hydrogen solutions: a technological innovation systems analysis, Transp. Res. D Transp. Environ. 87, 102492. https://doi.org/10.1016/j.trd.2020.102492. [CrossRef] [Google Scholar]
- Berna-Escriche C., Vargas-Salgado C., Alfonso-Solar D., Escriva-Castells A. (2022) Hydrogen production from surplus electricity generated by an autonomous renewable system: scenario 2040 on grand canary island, Spain, Sustainability 14, 11884. https://doi.org/10.3390/su141911884. [CrossRef] [Google Scholar]
- María Villarreal Vives A., Wang R., Roy S., Smallbone A. (2023) Techno-economic analysis of large-scale green hydrogen production and storage, Appl. Energy 346, 121333. https://doi.org/10.1016/j.apenergy.2023.121333. [CrossRef] [Google Scholar]
- Marocco P., Ferrero D., Martelli E., Santarelli M., Lanzini A. (2021) An MILP approach for the optimal design of renewable battery-hydrogen energy systems for off-grid insular communities, Energy Convers. Manag. 245, 114564. https://doi.org/10.1016/J.ENCONMAN.2021.114564. [CrossRef] [Google Scholar]
- Marocco P., Novo R., Lanzini A., Mattiazzo G., Santarelli M. (2023) Towards 100% renewable energy systems: the role of hydrogen and batteries, J. Energy Storage 57, 106306. https://doi.org/10.1016/J.EST.2022.106306. [CrossRef] [Google Scholar]
- Massaro M.C., Biga R., Kolisnichenko A., Marocco P., Monteverde A.H.A., Santarelli M. (2023) Potential and technical challenges of on-board hydrogen storage technologies coupled with fuel cell systems for aircraft electrification, J. Power Sources 555, 232397. https://doi.org/10.1016/j.jpowsour.2022.232397. [CrossRef] [Google Scholar]
- Reksten A.H., Thomassen M.S., Møller-Holst S., Sundseth K. (2022) Projecting the future cost of PEM and alkaline water electrolysers; a CAPEX model including electrolyser plant size and technology development, Int. J. Hydrogen Energy 47, 38106–38113. https://doi.org/10.1016/j.ijhydene.2022.08.306. [CrossRef] [Google Scholar]
- Burton N.A., Padilla R.V., Rose A., Habibullah H. (2021) Increasing the efficiency of hydrogen production from solar powered water electrolysis, Renew. Sustain. Energy Rev. 135, 110255. https://doi.org/10.1016/j.rser.2020.110255. [CrossRef] [Google Scholar]
- Hurtubia B., Sauma E. (2021) Economic and environmental analysis of hydrogen production when complementing renewable energy generation with grid electricity, Appl. Energy 304, 117739. https://doi.org/10.1016/j.apenergy.2021.117739. [CrossRef] [Google Scholar]
- Locatelli G., Boarin S., Fiordaliso A., Ricotti M.E. (2018) Load following of Small Modular Reactors (SMR) by cogeneration of hydrogen: a techno-economic analysis, Energy 148, 494–505. https://doi.org/10.1016/j.energy.2018.01.041. [CrossRef] [Google Scholar]
- Bhandari R., Shah R.R. (2021) Hydrogen as energy carrier: techno-economic assessment of decentralized hydrogen production in Germany, Renew. Energy 177, 915–931. https://doi.org/10.1016/j.renene.2021.05.149. [CrossRef] [Google Scholar]
- Correa G., Marocco P., Munoz P., Falagüerra T., Ferrero D., Santarelli M. (2022) Pressurized PEM water electrolysis: dynamic modelling focusing on the cathode side, Int. J. Hydrogen Energy 47, 4315–4327. https://doi.org/10.1016/j.ijhydene.2021.11.097. [CrossRef] [Google Scholar]
- Genovese M., Cigolotti V., Jannelli E., Fragiacomo P. (2023) Current standards and configurations for the permitting and operation of hydrogen refueling stations, Int. J. Hydrogen Energy 48, 19357–19371. https://doi.org/10.1016/j.ijhydene.2023.01.324. [CrossRef] [Google Scholar]
- Gül M., Akyüz E. (2023) Techno-economic viability and future price projections of photovoltaic-powered green hydrogen production in strategic regions of Turkey, J. Clean. Prod. 430, 139627. https://doi.org/10.1016/j.jclepro.2023.139627. [CrossRef] [Google Scholar]
- Hassan Q., Abdulateef A.M., Hafedh S.A., Al-samari A., Abdulateef J., Sameen A.Z., Salman H.M., Al-Jiboory A.K., Wieteska S., Jaszczur M. (2023) Renewable energy-to-green hydrogen: a review of main resources routes, processes and evaluation, Int. J. Hydrogen Energy 48, 17383–17408. https://doi.org/10.1016/j.ijhydene.2023.01.175. [CrossRef] [Google Scholar]
- Hofrichter A., Rank D., Heberl M., Sterner M. (2023) Determination of the optimal power ratio between electrolysis and renewable energy to investigate the effects on the hydrogen production costs, Int. J. Hydrogen Energy 48, 1651–1663. https://doi.org/10.1016/J.IJHYDENE.2022.09.263. [CrossRef] [Google Scholar]
- Zainal B.S., Ker P.J., Mohamed H., Ong H.C., Fattah I.M.R., Rahman S.M.A., Nghiem L.D., Mahlia T.M.I. (2023) Recent advancement and assessment of green hydrogen production technologies, Renew. Sustain. Energy Rev. 189, 113941. https://doi.org/10.1016/j.rser.2023.113941. [Google Scholar]
- Ueckerdt F., Bauer C., Dirnaichner A., Everall J., Sacchi R., Luderer G. (2021) Potential and risks of hydrogen-based e-fuels in climate change mitigation, Nat. Clim. Change 11, 384–393. https://doi.org/10.1038/s41558-021-01032-7. [CrossRef] [Google Scholar]
- Sollai S., Porcu A., Tola V., Ferrara F., Pettinau A. (2023) Renewable methanol production from green hydrogen and captured CO2: a techno-economic assessment, J. CO2 Util. 68, 102345. https://doi.org/10.1016/j.jcou.2022.102345. [Google Scholar]
- Roben F.T.C., Schone N., Bau U., Reuter M.A., Dahmen M., Bardow A. (2021) Decarbonizing copper production by power-to-hydrogen: a techno-economic analysis, J. Clean. Prod. 306, 127191. https://doi.org/10.1016/j.jclepro.2021.127191. [CrossRef] [Google Scholar]
- Rechberger K., Spanlang A., Sasiain Conde A., Wolfmeir H., Harris C. (2020) Green hydrogen-based direct reduction for low-carbon steelmaking, Steel Res. Int. 91, 2000110. https://doi.org/10.1002/srin.202000110. [CrossRef] [Google Scholar]
- Ma S., Liu Z., Zheng J.N., Wu Z., Li N., Guan X., Han J.N., Yang M., Song Y. (2024) Natural gas hydrate decomposition characteristics at the exploitation anaphase via sediment warming, Energy Fuels 38, 15, 14334–14342. https://doi.org/10.1021/acs.energyfuels.4c02709. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.