Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 80, 2025
|
|
---|---|---|
Article Number | 14 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.2516/stet/2024111 | |
Published online | 24 January 2025 |
- COP21: the key points of the Paris agreement. Retrieved from https://www.diplomatie.gouv.fr/en/french-foreign-policy/climate-and-environment/2015-paris-climate-conference-cop21/cop21-the-paris-agreement-in-four-key-points/ (accessed Jan. 05, 2020). [Google Scholar]
- Paoli L., Gül T. (2022) Electric cars fend off supply challenges to more than double global sales – analysis, IEA. Retrieved June 17, 2022, from https://www.iea.org/commentaries/electric-cars-fend-off-supply-challenges-to-more-than-double-global-sales. [Google Scholar]
- Shariff S.M., Iqbal D., Saad Alam M., Ahmad F. (2019) A state of the art review of electric vehicle to grid (V2G) technology, IOP Conf. Ser. Mater. Sci. Eng. 561, 1, 012103. https://doi.org/10.1088/1757-899x/561/1/012103. [CrossRef] [Google Scholar]
- Mwasilu F., Justo J.J., Kim E.K., Do T.D., Jung J.W. (2014) Electric vehicles and smart grid interaction: a review on vehicle to grid and renewable energy sources integration, Renew. Sustain. Energy Rev. 34, 501–516. https://doi.org/10.1016/j.rser.2014.03.031. [CrossRef] [Google Scholar]
- Mohamed M.A., Eltamaly A.M. (2018) Modeling and simulation of smart grid integrated with hybrid renewable energy systems, 1st edn. Springer, Cham. [CrossRef] [Google Scholar]
- Sovacool B.K., Kester J., Noel L., Zarazua de Rubens G. (2020) Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: a comprehensive review. Renew. Sustain. Energy Rev. 131, 109963. https://doi.org/10.1016/j.rser.2020.109963. [CrossRef] [Google Scholar]
- Wellisch D., Lenz J., Faschingbauer A., Pöschl R., Kunze S. (2015) Vehicle-to-grid AC charging station: an approach for smart charging development, IFAC-PapersOnline 48, 4, 55–60. https://doi.org/10.1016/j.ifacol.2015.07.007. [CrossRef] [Google Scholar]
- Wali K., Koubaa R., Krichen L. (2019) Cost benefit smart charging schedule for V2G applications, in: 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD), Istanbul, Turkey, 21–24 March. https://doi.org/10.1109/ssd.2019.8893171. [Google Scholar]
- Schuller A., Dietz B., Flath C.M., Weinhardt C. (2014) Charging strategies for battery electric vehicles: economic benchmark and V2G potential, IEEE Trans. Power Syst. 29, 5, 2014–2022. https://doi.org/10.1109/tpwrs.2014.2301024. [CrossRef] [Google Scholar]
- Pascual J., Barricarte J., Sanchis P., Marroyo L. (2015) Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting, Appl. Energy 158, 12–25. https://doi.org/10.1016/j.apenergy.2015.08.040. [CrossRef] [Google Scholar]
- García Vera Y.E., Dufo-López R., Bernal-Agustín J.L. (2019) Energy management in microgrids with renewable energy sources: a literature review, Appl. Sci. 9, 3854. https://doi.org/10.3390/app9183854. [CrossRef] [Google Scholar]
- Kafetzis A., Ziogou C., Panopoulos K.D., Papadopoulou S., Seferlis P., Voutetakis S. (2020) Energy management strategies based on hybrid automata for islanded microgrids with renewable sources, batteries and hydrogen, Renew. Sustain. Energy Rev. 134, 110118. https://doi.org/10.1016/j.rser.2020.110118. [CrossRef] [Google Scholar]
- Murty V.V.S.N., Kumar A. (2020) Multi-objective energy management in microgrids with hybrid energy sources and battery energy storage systems, Prot. Control Mod. Power Syst. 5, 2. https://doi.org/10.1186/s41601-019-0147-z. [CrossRef] [Google Scholar]
- Pascual J., Arcos-Aviles D., Ursúa A., Sanchis P., Marroyo L. (2021) Energy management for an electro-thermal renewable-based residential microgrid with energy balance forecasting and demand side management, Appl. Energy 295, 117062. https://doi.org/10.1016/j.apenergy.2021.117062. [CrossRef] [Google Scholar]
- Xiang Y., Liu J., Liu Y. (2016) Robust energy management of microgrid with uncertain renewable generation and load, IEEE Trans. Smart Grid 7, 2, 1034–1043. https://doi.org/10.1109/TSG.2014.2385801. [Google Scholar]
- Li H., Eseye A.T., Zhang J., Zheng D. (2017) Optimal energy management for industrial microgrids with high-penetration renewables, Prot. Control Mod. Power Syst. 2, 12. https://doi.org/10.1186/s41601-017-0040-6. [CrossRef] [Google Scholar]
- Lin W.-M., Tu C.-S., Tsai M.-T. (2016) Energy management strategy for microgrids by using enhanced bee colony optimization, Energies 9, 5. https://doi.org/10.3390/en9010005. [Google Scholar]
- Zhang Y., Gatsis N., Giannakis G.B. (2013) Robust energy management for microgrids with high-penetration renewables, IEEE Trans. Sustain. Energy 4, 4, 944–953. https://doi.org/10.1109/TSTE.2013.2255135. [CrossRef] [Google Scholar]
- Wang J., Wang M., Li H., Qin W., Wang L. (2018) Energy management strategy for microgrid including hybrid energy storage, in: 2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), Singapore, 30 October–02 November, IEEE, pp. 1–6. https://doi.org/10.1109/ACEPT.2018.8610715. [Google Scholar]
- V2G, a powerful tool for decarbonization, 2022, EDF. Retrieved November 2, 2022, from https://www.edf.fr/en/the-edf-group/inventing-the-future-of-energy/electric-mobility-for-today-and-tomorrow/edf-launches-europes-first-bi-directional-charging-demonstrator/v2g-a-powerful-tool-for-decarbonization. [Google Scholar]
- Vehicle-to-grid: The new generation electric vehicle, Renault Group. Retrieved November 2, 2022 from https://www.renaultgroup.com/en/news-on-air/news/vehicle-to-grid-the-main-advantage-of-the-electrical-grid/. [Google Scholar]
- Sarker E., Halder P., Seyedmahmoudian M., Jamei E., Horan B., Mekhilef S., Stojcevski A. (2021) Progress on the demand side management in smart grid and optimization approaches, Int. J. Energy Res. 45, 36–64. https://doi.org/10.1002/er.563164. [CrossRef] [Google Scholar]
- Huang Y., Wang W., Hou B. (2019) A hybrid algorithm for mixed integer nonlinear programming in residential energy management, J. Clean. Prod. 226, 940–948. https://doi.org/10.1016/j.jclepro.2019.04.062. [CrossRef] [Google Scholar]
- Javaid N., Hafeez G., Iqbal S., Alrajeh N., Alabed M.S., Guizani M. (2018) Energy efficient integration of renewable energy sources in the smart grid for demand side management, IEEE Access 6, 77077–77096. https://doi.org/10.1109/access.2018.2874645. [CrossRef] [Google Scholar]
- MATLAB & Simulink (2021) 24-hour simulation of a vehicle-to-grid (V2G) system. Mathworks France. Retrieved from https://fr.mathworks.com/help/physmod/sps/ug/24-hour-simulation-of-a-vehicle-to-grid-v2g-system.html;jsessionid=1efe1800413b84b480e945d1b338#responsive_offcanvas (accessed September 29, 2021). [Google Scholar]
- Nissan leaf battery real specs – pushevs, Pushevs–Push Electric Vehicles Forward, 2021. Retrieved November 3, 2022, from https://pushevs.com/2018/01/29/2018-nissan-leaf-battery-real-specs/. [Google Scholar]
- Tariffs of electricity for French houses. EDF Prices. Retrieved November 3, 2022, from https://www.french-property.com/guides/france/utilities/electricity/tariff. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.