Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Emerging Advances in Hybrid Renewable Energy Systems and Integration
Article Number 71
Number of page(s) 12
DOI https://doi.org/10.2516/stet/2024075
Published online 30 September 2024
  • Fan M.T., Zhang Z.P., Su A.X., Su J. (2013) Enabling technologies for active distribution systems, Pro. CSEE 33, 22, 12–18+5. [Google Scholar]
  • Xu X.L., Song Y.Q., Yao L.Z., Yan Z. (2018) Source-load-storage distributed coordinative optimization of ADN (Part I): Consensus based distributed coordination system modeling, Proc. CSEE 38, 10, 2841–2848+3135. [Google Scholar]
  • Yong P., Zhang N., Ci S., Kang C.Q. (2021) 5G communication base stations participating in demand response: key technologies and prospects, Proc. CSEE 41, 16, 5540–5552. [Google Scholar]
  • Fatma F.A., Israfil K., Mustafa Ş. (2023) Optimal scheduling of active electricity distribution network at feeder scale under possible conditions and considering operating cost, Electr. Eng. 105, 6, 3533–3547. [CrossRef] [Google Scholar]
  • Rajeshwari S., ManMohan S.R., Varun B. (2022) A multi-objective optimization scheduling method based on the genetic algorithm in cloud computing, Int. J. Cloud Appl. Comput. 12, 1, 1–21. [Google Scholar]
  • Wen J., Qu X., Lin S.Y., Ding L., Jiang L. (2022) An optimization method of active distribution network considering time variations in load and renewable distributed generation, Int. Trans. Electr. Energy Syst. 2022, 1–21. [CrossRef] [Google Scholar]
  • Xu G., Zhang B., Yang L., Wang Y. (2021) Active and reactive power collaborative optimization for active distribution networks considering bi-directional V2G behavior, Sustainability 13, 6489. [CrossRef] [Google Scholar]
  • Zhang J.M., Liu J., Liu D.F., Wang T. (2023) Coordinated scheme for expansion planning of transmission system with active distribution system flexibility provision, Energy Rep. 9, S1, 87–97. [CrossRef] [Google Scholar]
  • Zhang J.R., Li Z.Y., Wang B.B. (2021) Within-day rolling optimal scheduling problem for active distribution networks by multi-objective evolutionary algorithm based on decomposition integrating with thought of simulated annealing, Energy 223, 120027. [CrossRef] [Google Scholar]
  • Cui Q.S., Bai X.M., Zhu S.Z., Li N. (2016) ADN multi-objective planning considering collaborative optimization of RDG and GAEP, in: 2016 IEEE International Conference on Power System Technology (POWERCON), Wollongong, NSW, Australia, 28 September–01 October, IEEE, pp. 1–7. [Google Scholar]
  • Xu C.B., Yang X.D., Zhang Y.B. (2021) Stochastic operation optimization method for active distribution networks with soft open point considering risk management and control, Autom. Electr. Power Syst. 45, 11, 68–76. [Google Scholar]
  • Li M., Furifu C., Ge C., Zheng Y.P. (2023) Distributed robust optimal dispatch for the microgrid considering output correlation between wind and photovoltaic, Energy Eng. 120, 8, 1775–1801. [CrossRef] [Google Scholar]
  • Renga D., Hassan H., Meo M., Nuaymi L. (2018) Energy management and base station on/off switching in green mobile networks for offering ancillary services, IEEE Trans. Green Commun. Netw. 2, 3, 868–880. [CrossRef] [Google Scholar]
  • Zeng B., Yang Y., Duan J., Zeng M., Ouyang S., Li C. (2015) Key issues and research prospects for demand-side response in alternate electrical power systems with renewable energy sources, Autom. Electr. Power Syst. 39, 17, 10–18. [Google Scholar]
  • Liu Y., Wang Q., Zeng Q., Ye Y., Liu C., Xu L.X. (2021) Key technologies and prospects of energy consumption management for 5G network in background of energy internet, Autom. Electr. Power Syst. 45, 12, 174–183. [Google Scholar]
  • Ali N., Ali M.J., Yazdan A. (2023) Injecting cognitive intelligence into beyond-5G networks: A MAC layer perspective, Comput. Electr. Eng. 108, 108717. [CrossRef] [Google Scholar]
  • Fisusi A., Grace D., Mitchell P. (2017) Energy saving in a 5G separation architecture under different power model assumptions, Comput. Commun. 105, 89–104. [CrossRef] [Google Scholar]
  • Guo W., Mao Y., Chen Y., Zhang X. (2022) Multi-objective optimization model of micro-grid access to 5G base station under the background of China’s carbon peak shaving and carbon neutrality targets, Front. Energy Res. 10, 1032993. [CrossRef] [MathSciNet] [Google Scholar]
  • Vineet S., Mohammad K., Shivani B. (2022) Optimizing storage for energy conservation in tracking wireless sensor network objects, Comput. Syst. Sci. Eng. 45, 2, 1211–1231. [Google Scholar]
  • Wang Q., Zhao X., Lv Z.T., Ma X.Y., Zhang R.T., Lin Y. (2020) Optimizing the ultra-dense 5G base stations in urban outdoor areas: coupling GIS and heuristic optimization, Sustain. Cities Soc. 63, 102445. [CrossRef] [Google Scholar]
  • Dou A., Cui F.F., Kang X. (2023) Optimal scheduling for charging and discharging of electric vehicles based on deep reinforcement learning, Front. Energy Res. 11, 1273820. [CrossRef] [Google Scholar]
  • Jiang C., Han X., Xie H.C. (2017) Theory and method of interval uncertainty optimal design, Science Press, Beijing. [Google Scholar]
  • Dolatabadi S.H., Ghorbanian M., Siano P., Hatziargyriou N.D. (2020) An enhanced IEEE 33 bus benchmark test system for distribution system studies, IEEE Trans. Power Syst. 36, 3, 2565–2572. [Google Scholar]
  • Zeng B., Xu F.Q., Liu Y.X., Liu Y., Gong D.W. (2021) High-dimensional multiobjective optimization for multi-energy coupled system planning with consideration of economic, environmental and social factors, Proc. CSEE 36, 7, 1434–1445. [Google Scholar]
  • Wang Y.W., Song M.H., Jia M.Y. (2023) Multi-objective distributionally robust optimization for hydrogen-involved total renewable energy CCHP planning under source-load uncertainties, Appl. Energy 342, 121212. [CrossRef] [Google Scholar]
  • Lu Y., Dai Y., Ma W.Z., Wu X., Liu M.B., Lin S.J. (2019) Decentralized dynamic optimal power flow in distribution networks with distributed generation and energy storage devices, Power Syst. Technol. 43, 2, 434–442. [Google Scholar]
  • Chen Q.H., He Y.H., Zeng Y.Z., Liu J., Li M.D. (2020) Application of TOPSIS method in the comprehensive evaluation of steam-air preheater on waste incineration boiler, Proc. CSEE 40, 4, 241–248+385. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.