Open Access
Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Article Number 70
Number of page(s) 14
DOI https://doi.org/10.2516/stet/2024069
Published online 27 September 2024
  • Wang Y.Z., Kang L.G., Zhang J., Zhao W., Zhu Y.L., Zhao J. (2021) Development history, typical from and future trend of integrated energy system, Acta Energ. Sol. Sin. 42, 8, 84–95. [Google Scholar]
  • Yu L.S., Zeng Y., Li N.F., Wang B., Zhang S.R., Li H. (2023) Optimization of combined cooling, heating and power system using clean energy for low-carbon communities, Build. Sci. 39, 6, 197–205. [Google Scholar]
  • Liu Y.R., Zhang R.P., Dong H.Y. (2023) Optimal scheduling of integrated energy systems in agricultural parks based on improved probability planning algorithm, Integr. Intell. Energy 45, 10, 35–43. [Google Scholar]
  • Liu M., Shi Y., Fang F. (2014) Combined cooling, heating and power systems: A survey, Renew. Sustain. Energy Rev. 35, 1–22. [CrossRef] [Google Scholar]
  • Lin J.H., Xi S.Y., Li M.S., Wu Q.H. (2023) Multi-time scales optimization of park-level integrated energy system, Mod. Electron. Tech. 46, 22, 137–143. [Google Scholar]
  • Gao Y.F., Yun C.B., Kong F.P., Wang X.S. (2023) Optimization of integrated energy system coupled with power-to-gas and carbon capture equipment under demand response incentive, Electric Power 57, 1–9. [Google Scholar]
  • Gao P.H., Dai Y.J., Tong Y.W., Dong P.W. (2015) Energy matching and optimization analysis of waste to energy CCHP (combined cooling, heating and power) system with exergy and energy level, Energy 79, 522–535. [CrossRef] [Google Scholar]
  • Maraver D., Sin A., Royo J., Sebastian F. (2013) Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters, Appl. Energy 102, 1303–1313. [CrossRef] [Google Scholar]
  • Ma D., Zhang L., Sun B. (2021) An interval scheduling method for the CCHP system containing renewable energy sources based on model predictive control, Energy 236, 121418. [CrossRef] [Google Scholar]
  • Jia J.D., Chen H.W., Liu H.T., Ai T.C., Li H.Q. (2021) Thermodynamic performance analyses for CCHP system coupled with organic Rankine cycle and solar thermal utilization under a novel operation strategy, Energy Convers. Manag. 239, 114212. [CrossRef] [Google Scholar]
  • Soheyli S., Mayam M.H.S., Mehrjoo M. (2016) Modeling a novel CCHP system including solar and wind renewable energy resources and sizing by a CC-MOPSO algorithm, Appl. Energy 184, 375–395. [CrossRef] [Google Scholar]
  • Ren F., Wei Z., Zhai X. (2021) Multi-objective optimization and evaluation of hybrid CCHP systems for different building types, Energy 215, 119096. [CrossRef] [Google Scholar]
  • Ge Y., Han J.T., Ma Q.Z., Feng J.H. (2022) Optimal configuration and operation analysis of solar-assisted natural gas distributed energy system with energy storage, Energy 246, 123429. [CrossRef] [Google Scholar]
  • Hassan R., Das B.K., Al-Abdeli Y.M. (2022) Investigation of a hybrid renewable-based grid-independent electricity-heat nexus: impacts of recovery and thermally storing waste heat and electricity, Energy Convers. Manag. 252, 115073. [CrossRef] [Google Scholar]
  • Huneke F., Henkel J., Gonzale J.A.B., Erdmann G. (2012) Optimisation of hybrid off-grid energy systems by linear programming, Energy Sustain. Soc. 2, 1, 1–19. [Google Scholar]
  • Stanek W.W., Gazda W., Kostowski W. (2015) Thermo-ecological assessment of CCHP (combined cold-heat-and-power) plant supported with renewable energy, Energy 92, Part 3, 279–289. [CrossRef] [Google Scholar]
  • Ruan Y.J., Liang Z.Y., Qian F.Y., Meng H., Gao Y. (2023) Operation strategy optimization of combined cooling, heating, and power systems with energy storage and renewable energy based on deep reinforcement learning, J. Build. Eng. 65, 105682. [CrossRef] [Google Scholar]
  • Wang J.J., Mao T.Z., Sui J., Jin H.G. (2015) Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas, Energy 93, Part 1, 801–815. [CrossRef] [Google Scholar]
  • Zhang L., Li F., Sun B., Zhang C. (2019) Integrated optimization design of combined cooling, heating, and power system coupled with solar and biomass energy, Energies 12, 687. [CrossRef] [Google Scholar]
  • Li X., Kan X., Sun X., Zhao Y., Ge T., Dai Y. (2019) Performance analysis of a biomass gasification-based CCHP system integrated with variable-effect LiBr-H2O absorption cooling and desiccant dehumidification, Energy 176, 961–979. [CrossRef] [Google Scholar]
  • Wang Y., Feng H. (2019) Optimization of capacity of CCHP system coupled with solar and biomass energy, IOP Conf. Ser. Earth Environ. Sci. 371, 4, 042030. [CrossRef] [Google Scholar]
  • Xu B., Wang J. (2024) Optimal energy optimization of the integrated hybrid energy system considering storage system performance, Multiscale Multidiscip. Model. Exp. Des. 7, 2, 705–710. [CrossRef] [Google Scholar]
  • Buonomano A., Calise F., Vicidomini M. (2018) A hybrid renewable system based on wind and solar energy coupled with an electrical storage: dynamic simulation and economic assessment, Energy 155, 174–189. [CrossRef] [Google Scholar]
  • Balali M.H., Nouri N., Omrani E., Nasiri A., Otieno W. (2017) An overview of the environmental, economic, and material developments of the solar and wind sources coupled with the energy storage systems, Int. J. Energy Res. 41, 1948–1962. [CrossRef] [Google Scholar]
  • Fang R. (2019) Life cycle cost assessment of wind power–hydrogen coupled integrated energy system, Int. J. Hydrog. Energy 44, 29399–29408. [CrossRef] [Google Scholar]
  • Kang L., Yang J., Deng S. (2016) Energy, economical, environmental evaluation of a CCHP-GSHP system based on carbon tax and electric feed in tariff, Energy Proc. 88, 510–517. [CrossRef] [Google Scholar]
  • Kang L., Yang J., An Q., Deng S., Zhao J., Li Z. (2017) Complementary configuration and performance comparison of CCHP-ORC system with a ground source heat pump under three energy management modes, Energy Convers. Manag. 135, 244–255. [CrossRef] [Google Scholar]
  • Ling W., Abed M.A., Farouk N. (2024) Modeling of geothermal tailored CCHP system with heat recovery centered thermal design/analysis; ANN-based optimization and economic study, Case Stud. Therm. Eng. 59, 104511. [CrossRef] [Google Scholar]
  • Yang J., Song W., Wang Z. (2024) Direct/indirect optimal use of shallow geothermal energy in floor radiant cooling system coupled with air-handling system, J. Build. Eng. 89, 109206. [CrossRef] [Google Scholar]
  • Song A., Zhu J., Zhang P. (2019) Experimental research on solar and geothermal energy coupling power generation system, Energy Proc. 158, 5982–5987. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.