Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
|
|
---|---|---|
Article Number | 68 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.2516/stet/2024066 | |
Published online | 27 September 2024 |
- Zhou Y., Cao S., Kosonen R., Hamdy M. (2020) Multi-objective optimisation of an interactive buildings-vehicles energy sharing network with high energy flexibility using the Pareto archive NSGA-II algorithm, Energy Convers. Manage. 218, 113017. [CrossRef] [Google Scholar]
- Alba S.O., Manana M. (2016) New Energy research findings reported from University of Cantabria (energy research in airports: a review), Energy Weekly News 384. [Google Scholar]
- Goh H.H., Suo W., Liang X., Zhang D., Dai W., Kurniawan T.A., Goh K.C. (2024) An adaptive energy management strategy for airports to achieve carbon neutrality by 2050 via waste, wind, and solar power, Front. Energy Res. 12, 1365650. [CrossRef] [Google Scholar]
- Baxter G. (2021) Achieving carbon neutral airport operations by 2025: The case of Sydney Airport, Australia, Transp. Telecommun. J. 22, 1, 1–14. [Google Scholar]
- Xiang Y., Cai H., Liu J., Zhang X. (2021) Techno-economic design of energy systems for airport electrification: A hydrogen-solar-storage integrated microgrid solution, Appl. Energy 283, 116374. [CrossRef] [Google Scholar]
- Gu X., Xie J., Huang C., Ma K., Liu J. (2022) Prediction of the spatiotemporal passenger distribution of a large airport terminal and its impact on energy simulation, Sustain. Cities. Soc. 78, 103619. [CrossRef] [Google Scholar]
- Baxter G., Srisaeng P., Wild G. (2018) An assessment of airport sustainability, part 2 – energy management at Copenhagen Airport, Resources 7, 2, 32. [CrossRef] [Google Scholar]
- Jensen S.Ø., Marszal-Pomianowska A., Lollini R., Pasut W., Knotzer A., Engelmann P., Stafford A., Reynders G. (2017) IEA EBC annex 67 energy flexible buildings, Energy Buildings 155, 25–34. [CrossRef] [Google Scholar]
- Yan C., Wang F., Pan Y., Shan K., Kosonen R. (2020) A multi-timescale cold storage system within energy flexible buildings for power balance management of smart grids, Renew. Energy 161, 626–634. [CrossRef] [Google Scholar]
- Shaikh Z., Chaudhry H.N. (2018) Energy modelling and indoor air quality analysis of cooling systems for buildings in hot climates, Fluids 3, 4, 77. [CrossRef] [Google Scholar]
- Kılkış B., Kılkış Ş. (2017) New exergy metrics for energy, environment, and economy nexus and optimum design model for nearly-zero exergy airport (nZEXAP) systems, Energy 140, 1329–1349. [CrossRef] [Google Scholar]
- Prasetyo S.D., Budiana E.P., Prabowo A.R., Arifin Z. (2023) Modeling finned thermal collector construction nanofluid-based Al2O3 to enhance photovoltaic performance, Civ. Eng. J. 9, 12, 2989–3007. [CrossRef] [Google Scholar]
- Arifin Z., Khairunisa N., Kristiawan B., Prasetyo S.D., Bangun W.B. (2023) Performance analysis of nanofluid-based photovoltaic thermal collector with different convection cooling flow, Civ. Eng. J. 9, 8, 1922–1935. [CrossRef] [Google Scholar]
- Brok N., Green T., Heerup C., Oren S.S., Madsen H. (2022) Optimal operation of an ice-tank for a supermarket refrigeration system, Control Eng, Pract. 119, 104973. [Google Scholar]
- Shi J., Guo H., Chang C., Dong Z., Shao S., Zheng Z. (2020) Design and Performance Analysis of the Water Cold Storage System in the Energy Center of Pudong International Airport, Fluid Machinery 48, 9, 71–76. [Google Scholar]
- Kurniawan T.B., Dewi D.A., Usman F., Fadly F. (2023) Towards energy analysis and efficiency for sustainable buildings, Emerg. Sci. J. 7, 6, 2226–2238. [CrossRef] [Google Scholar]
- Jiang M., Qi L., Yu Z., Wu D., Si P., Li P., Wei W., Yu X., Yan J. (2021) National level assessment of using existing airport infrastructures for photovoltaic deployment, Appl. Energy 298, 117195. [CrossRef] [Google Scholar]
- Lin L., Chen G., Liu X., Liu X., Zhang T. (2023) Characterizing cooling load in multi-area airport terminal buildings: Clustering and uncertainty analysis for energy flexibility, J. Build. Eng. 79, 107797. [CrossRef] [Google Scholar]
- Zhang W., Yu J., Zhao A., Zhou X. (2021) Predictive model of cooling load for ice storage air-conditioning system by using GBDT, Energy Rep. 7, 1588–1597. [CrossRef] [Google Scholar]
- Heidari A., Mortazavi S.S., Bansal R.C. (2020) Stochastic effects of ice storage on improvement of an energy hub optimal operation including demand response and renewable energies, Appl. Energy 261, 114393. [CrossRef] [Google Scholar]
- Li S., Gong W., Gu Q. (2021) A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models, Renew. Sustain. Energy Rev. 141, 110828. [CrossRef] [Google Scholar]
- Zhang Y., Si P., Feng Y., Rong X., Wang X., Zhang Y. (2017) Operation strategy optimization of BCHP system with thermal energy storage: A case study for airport terminal in Qingdao, China, Energy Build. 154, 465–478. [CrossRef] [Google Scholar]
- Zhou C., Jia H., Jin X., Mu Y., Yu X., Xu X., Li B., Sun W. (2023) Two-stage robust optimization for space heating loads of buildings in integrated community energy systems, Appl. Energy 331, 120451. [CrossRef] [Google Scholar]
- Kotopouleas A., Nikolopoulou M. (2018) Evaluation of comfort conditions in airport terminal buildings, Build. Environ. 130, 162–178. [CrossRef] [Google Scholar]
- Xiao T., You F. (2024) Physically consistent deep learning-based day-ahead energy dispatching and thermal comfort control for grid-interactive communities, Appl. Energy 353, 122133. [CrossRef] [Google Scholar]
- Liu X., Lin L., Liu X., Zhang T., Rong X., Yang L., Xiong D. (2018) Evaluation of air infiltration in a hub airport terminal: On-site measurement and numerical simulation, Build. Environ. 143, 163–177. [CrossRef] [Google Scholar]
- Zhang M., Xu W., Zhao W. (2023) Combined optimal dispatching of wind-light-fire-storage considering electricity price response and uncertainty of wind and photovoltaic power, Energy Rep. 9, 790–798. [CrossRef] [Google Scholar]
- Ruiming F. (2019) Multi-objective optimized operation of integrated energy system with hydrogen storage, Int. J. Hydrogen Energy 44, 56, 29409–29417. [CrossRef] [Google Scholar]
- Cococcioni M., Fiaschi L. (2021) The Big-M method with the numerical infinite M, Optim. Lett. 15, 7, 2455–2468. [CrossRef] [MathSciNet] [Google Scholar]
- Tavakkoli M., Dehkordi S.F., Kasmaei M.P., Hatziargyriou N., Liski M., Lehtonen M. (2022) Investigating How the Equilibria of the Electricity Market Are Affected by Modeling the strategic Behavior of Consumers, Int. Rev. Electr. Eng-I. 17, 3, 225–247. [Google Scholar]
- Yao W., Wang C., Yang M., Wang K., Dong X., Zhang Z. (2023) A tri-layer decision-making framework for IES considering the interaction of integrated demand response and multi-energy market clearing, Appl. Energy 342, 121196. [CrossRef] [Google Scholar]
- Li L.L., Miao Y., Lim M.K., Sethanan K., Tseng M.L. (2024) Integrated energy system for low-carbon economic operation optimization: Pareto compromise programming and master-slave game, Renew. Energy 222, 119946. [CrossRef] [Google Scholar]
- Liu J., Yu N., Lei B., Rong X., Yang L. (2009) Research on indoor environment for the terminal 1 of Chengdu Shuangliu international airport, in: J. Zeng (ed.), Proc. Eleventh International IBPSA conference, Build. Simul., Glasgow, Scotland, pp. 2138–2145. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.