Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Selected Papers from First European Conference on Gas Hydrates (ECGH), 2022
Article Number 14
Number of page(s) 14
DOI https://doi.org/10.2516/stet/2024012
Published online 08 March 2024
  • Abbasi G.R., Arif M., Isah A., Ali M., Mahmoud M., Hoteit H., Keshavarz A., Iglauer S. (2022) Gas hydrate characterization in sediments via X-ray microcomputed tomography, Earth Sci. Rev. 234, 104233. [CrossRef] [Google Scholar]
  • Bagherzadeh S.A., Moudrakovski I.L., Ripmeester J.A., Englezos P. (2011) Magnetic resonance imaging of gas hydrate formation in a bed of silica sand particles, Energy & Fuels 25, 7, 3083–3092. [CrossRef] [Google Scholar]
  • Boswell R., Collett T.S. (2011) Current perspectives on gas hydrate resources, Energy Environ. Sci. 2011, 4, 1206–1215. [CrossRef] [Google Scholar]
  • Boswell R., Moridis G., Reagan M., Collett T.S. (2011) Gas hydrate accumulation types and their application to numerical simulation, Manuscript 130, 17–22. [Google Scholar]
  • Chaouachi M., Falenty A., Sell K., Enzmann F., Kersten M., Haberthür D., Kuhs W.F. (2015) Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy, Geochem. Geophys. Geosys. 16, 6, 1711–1722. [CrossRef] [Google Scholar]
  • Choi J.-H., Dai S., Cha J.-H., Seol Y. (2014) Laboratory formation of noncementing hydrates in sandy sediments, Geochem. Geophys. Geosys. 15, 4, 1648–1656. [CrossRef] [Google Scholar]
  • Chong Z.R., Yang M., Khoo B.C., Linga P. (2016) Size effect of porous media on methane hydrate formation and dissociation in an excess gas environment, Ind. Eng. Chem. Res. 55, 29, 7981–7991. [CrossRef] [Google Scholar]
  • Collett T., Bahk J.-J., Baker R., Boswell R., Divins D., Frye M., Goldberg D., Husebø J., Koh C., Malone M., Morell M., Myers G., Shipp C., Torres M. (2014) Methane hydrates in nature – current knowledge and challenges, J. Chem. Eng. Data 60, 2, 319–329. [Google Scholar]
  • Dallimore S., Uchida T., Collett T. (1999) Scientific results from JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, Mackenzie delta, Northwest Territories, Canada, Vol. 544, Geological Survey of Canada Ottawa, Ontario, Canada. [CrossRef] [Google Scholar]
  • Davidson D., Garg S., Gough S., Hawkins R., Ripmeester J. (1977) Characterization of natural gas hydrates by nuclear magnetic resonance and dielectric relaxation, Can. J. Chem 55, 20, 3641–3650. [CrossRef] [Google Scholar]
  • Dvorkin J., Helgerud M.B., Waite W.F., Kirby S.H., Nur A. (2000) Introduction to physical properties and elasticity models. Introduction to Physical Properties and Elasticity Models, in Natural Gas Hydrate. Coastal Systems and Continental Margins, Vol. 5, M.D. Max (ed.),Springer, Dordrecht. [Google Scholar]
  • Ebinuma T., Suzuki K., Nagao J., Oyama H., Narita H. (2008) Ultrasonic wave velocities associated with formation and dissociation of methane hydrate in artificial sandy sediments, in Offshore Technology Conference, Houston, Texas, May 5–8. [Google Scholar]
  • Everett D. (1961) The thermodynamics of frost damage to porous solids, Trans. Faraday Soc. 57, 1541–1551. [CrossRef] [Google Scholar]
  • Feia S., Ghabezloo S., Bruchon J.F., Sulem J., Canou J., Dupla J.C. (2014) Experimental evaluation of the pore-access size distribution of sands, Geotech. Test. J. 37, 4, 1–8. [Google Scholar]
  • Heeschen K.U., Schicks J.M., Oeltzschner G. (2016) The promoting effect of natural sand on methane hydrate formation: Grain sizes and mineral composition, Fuel 181, 139–147. [CrossRef] [Google Scholar]
  • Kerkar P.B., Horvat K., Jones K.W., Mahajan D. (2014) Imaging methane hydrates growth dynamics in porous media using synchrotron X-ray computed microtomography, Geochem. Geophys. Geosys. 15, 12, 4759–4768. [CrossRef] [Google Scholar]
  • Kneafsey T.J. (2011) Examination of hydrate formation methods: trying to create representative samples, Lawrence Berkeley National Laboratory. Available at https://escholarship.org/uc/item/7v23q5mw. [CrossRef] [Google Scholar]
  • Le T.X., Tang A.M., Aimedieu P., Bornert M., Chabot B., Rodts S. (2019a) Methane hydrate-bearing sand – an energy resource? in Proceedings of the 1st Vietnam Symposium on Advances in Offshore Engineering. VSOE 2018. Lecture Notes in Civil Engineering, vol. 18, M. Randolph, D. Doan, A. Tang, M. Bui, V. Dinh (eds.), Springer, Singapore, pp. 158–163. [Google Scholar]
  • Le T.X., Aimedieu P., Bornert M., Chabot B., Rodts S., Tang A.M. (2019b) Effect of temperature cycle on mechanical properties of methane hydrate-bearing sediment, Soils Found. 59, 4, 814–827. https://doi.org/10.1016/j.sandf.2019.02.008. [CrossRef] [Google Scholar]
  • Le T.X., Bornert M., Aimedieu P., Chabot B., King A., Tang A.M. (2020a) An experimental investigation on methane hydrate morphologies and pore habits in sandy sediment using synchrotron X-ray computed tomography, Mar. Pet. Geol. 122, 104646. https://doi.org/10.1016/j/marpetgeo.2020.104646. [CrossRef] [Google Scholar]
  • Le T.X., Rodts S., Hautemayou D., Aimedieu P., Bornert M., Chabot B., Tang A.M. (2020b) Kinetics of methane hydrate formation and dissociation in sand sediment, Geomech. Energy Environ. 23, 100103. https://doi.org/10.1016/j.gete.2018.09.007. [CrossRef] [Google Scholar]
  • Le T.X., Bornert M., Brown R., Aimedieu P., Broseta D., Chabot B., King A., Tang A.M. (2021a) Combining optical microscopy and X-ray computed tomography reveals novel morphologies and growth processes of methane hydrate in sand pores, Energies 14, 5672. https://doi.org/10.3390/en14185672. [CrossRef] [Google Scholar]
  • Le T.X., Aimedieu P., Bornert M., Chabot B., King A., Tang A.M. (2021b) New X-ray microtomography setups and optimal scan conditions to investigate methane hydrate-bearing sand microstructure, Geotech. Test. J. 44, 2, 502–519. https://doi.org/10.1520/GTJ20190355. [CrossRef] [Google Scholar]
  • Lei L., Seol Y., Choi J.-H., Kneafsey T.J. (2019) Pore habit of methane hydrate and its evolution in sediment matrix – laboratory visualization with phase-contrast micro-ct, Mar. Pet. Geol. 104, 451–467. [CrossRef] [Google Scholar]
  • Martinez de Banos M.L., Hobeika N., Bouriat P., Broseta D., Enciso E., Clément F., Brown R. (2016) How do gas hydrates spread on a substrate? Cryst. Growth Des. 16, 8, 4360–4373. [CrossRef] [Google Scholar]
  • Metaxas P.J., Lim V.W., Booth C., Zhen J., Stanwix P.L., Johns M.L., Aman Z.M., Haandrikman G., Crosby D., May E.F. (2019) Gas hydrate formation probability distributions: Induction times, rates of nucleation and growth, Fuel 252, 448–457. [CrossRef] [Google Scholar]
  • Nguyen-Sy T., Tang A.M., To Q.D., Vu M.N. (2019) A model to predict the elastic properties of gas hydrate-bearing sediments, J. Appl. Geophys. 169, 154–164. [CrossRef] [Google Scholar]
  • Pinkert S. (2016) Rowe’s stress-dilatancy theory for hydrate-bearing sand, Int. J. Geomech. 17, 1, 06016008. [Google Scholar]
  • Pinkert S., Grozic J. (2014) Prediction of the mechanical response of hydrate-bearing sands, J. Geophys. Res. Solid Earth 119, 6, 4695–4707. [CrossRef] [Google Scholar]
  • Popenoe P., Schmuck E.A., Dillon W.P. (1993) The cape fear landslide: slope failure associated with salt diapirism and gas hydrate decomposition, in Schwab W.C., Lee H.J., Twichell D.C.(Eds.), Submarine landslides: selected studies in the US exclusive economic zone, U.S. Geol. Surv. Bull., pp. 40–53. [Google Scholar]
  • Priest J.A., Best A.I., Clayton C.R. (2005) A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand, J. Geophys. Res. Solid Earth 110, B4, B04202. [CrossRef] [Google Scholar]
  • Priest J.A., Rees E.V., Clayton C.R. (2009) Influence of gas hydrate morphology on the seismic velocities of sands, J. Geophys. Res. Solid Earth 114, B11, B11205. [CrossRef] [Google Scholar]
  • Ruppel C. (2007) Tapping methane hydrates for unconventional natural gas, Elements 3, 3, 193–199. [CrossRef] [Google Scholar]
  • Ruppel C.D., Kessler J.D. (2017) The interaction of climate change and methane hydrates, Rev. Geophys. 55, 1, 126–168. [CrossRef] [Google Scholar]
  • Sanchez M., Gai X., Santamarina J.C. (2017) A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms, Comput. Geotech. 84, 28–46. [CrossRef] [Google Scholar]
  • Spangenberg E., Kulenkampff J., Naumann R., Erzinger J. (2005) Pore space hydrate formation in a glass bead sample from methane dissolved in water, Geophys. Res. Lett. 32, 24, L24301. [CrossRef] [Google Scholar]
  • Turner D., Boxall J., Yang S., Kleehammer D., Koh C., Miller K., Sloan E., Xu Z., Matthews P., Talley L. (2005) Development of a hydrate kinetic model and its incorporation into the OLGA2000-R transient multi-phase flow simulator, in 5th International Conference on Gas Hydrates, Trondheim, Norway, 12–16 June. Available at https://www.osti.gov/etdeweb/biblio/20685609 [Google Scholar]
  • Uchida S., Soga K., Yamamoto K. (2012) Critical state soil constitutive model for methane hydrate soil, J. Geophys. Res. Solid Earth 117, B3, B03209. [CrossRef] [Google Scholar]
  • Waite W.F., Winters W.J., Mason D. (2004) Methane hydrate formation in partially water saturated Ottawa sand, Am. Min. 89, 8–9, 1202–1207. [CrossRef] [Google Scholar]
  • Waite W.F., Santamarina J.C., Cortes D.D., Dugan B., Espinoza D.N., Germaine J., Jang J., Jung J.W., Kneafsey T.J., Shin H., Soga K., Winters W.J., Yun T.S. (2009) Physical properties of hydrate-bearing sediments, Rev. Geophys. 47, 4, RG4003. [CrossRef] [Google Scholar]
  • Wang S., Wang P., Chen B., Yang M., Li Y. (2018) Velocity mapping of steady water flow through methane hydrate bearing samples, J. Nat. Gas Sci. Eng. 53, 385–393. [CrossRef] [Google Scholar]
  • Wu P., Li Y., Liu W., Sun X., Kong X., Song Y. (2020) Cementation failure behavior of consolidated gas hydrate-bearing sand, JGR Solid Earth 125, e2019JB18623. [Google Scholar]
  • Zhang L., Sun L., Sun M., Lv X., Dong H., Miao Y., Yang L., Song Y., Zhao J. (2019) Analyzing spatially and temporally visualized formation behavior of methane hydrate in unconsolidated porous media, Magn. Reson. Imaging 61, 224–230. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.