Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
|
|
---|---|---|
Article Number | 15 | |
Number of page(s) | 21 | |
DOI | https://doi.org/10.2516/stet/2024014 | |
Published online | 15 March 2024 |
- Nundy S., Ghosh A., Mesloub A., Albaqawy G.A., Alnaim M.M. (2021) Impact of COVID-19 pandemic on socio-economic, energy-environment and transport sector globally and sustainable development goal (SDG), J. Clean. Prod. 312, 127705. https://doi.org/10.1016/j.jclepro.2021.127705. [CrossRef] [Google Scholar]
- Gulseven O., Al Harmoodi F., Al Falasi M., Alshomali I. (2020) How the COVID-19 pandemic will affect the UN sustainable development goals? SSRN, Available at https://doi.org/10.2139/ssrn.3592933. [Google Scholar]
- Sun L., Zhang T., Liu S., Wang K., Rogers T., Yao L., Zhao P. (2021) Reducing energy consumption and pollution in the urban transportation sector: a review of policies and regulations in Beijing, J. Clean. Prod. 285, 125339. https://doi.org/10.1016/j.jclepro.2020.125339. [CrossRef] [Google Scholar]
- Zhang M., Li H., Zhou M., Mu H. (2011) Decomposition analysis of energy consumption in Chinese transportation sector, Appl. Energy 88, 6, 2279–2285. https://doi.org/10.1016/j.apenergy.2010.12.077. [CrossRef] [Google Scholar]
- Singh A.P., Kumar D., Agarwal A.K. (2021) Introduction to Alternative Fuels and Advanced Combustion Techniques as Sustainable Solutions for Internal Combustion Engines, Singh A.P., Kumar D., Agarwal A.K. (eds.), Alternative fuels and advanced combustion techniques as sustainable solutions for internal combustion engines, Springer, Singapore, pp. 3–7. https://doi.org/10.1007/978-981-16-1513-9_1. [CrossRef] [Google Scholar]
- Ağbulut Ü., Bakir H. (2019) The investigation on economic and ecological impacts of tendency to electric vehicles instead of internal combustion engines, Duzce Univ. Saglik. Bilim. Enst. Dergsi. 7, 1, 25–36. https://doi.org/10.29130/dubited.457914. [Google Scholar]
- Mohsin M., Abbas Q., Zhang J., Ikram M., Iqbal N. (2019) Integrated effect of energy consumption, economic development, and population growth on CO2 based environmental degradation: a case of transport sector, Environ. Sci. Pollut. Res. 26, 32, 32824–32835. https://doi.org/10.1007/s11356-019-06372-8. [CrossRef] [PubMed] [Google Scholar]
- Kodjak D. (2015) Policies to reduce fuel consumption, air pollution, and carbon emissions from vehicles in G20 nations, The International Council on Clean Transportation, Available at https://theicct.org/sites/default/files/publications/ICCT_G20-briefing-paper_Jun2015_updated.pdf. [Google Scholar]
- Kalghatgi G., Levinsky H., Colket M. (2018) Future transportation fuels, Prog. Energy Combust. Sci. 69, 103–105. https://doi.org/10.1016/j.pecs.2018.06.003. [CrossRef] [Google Scholar]
- Ağbulut Ü. (2022) Forecasting of transportation-related energy demand and CO2 emissions in Turkey with different machine learning algorithms, Sustain. Prod. Consum. 29, 141–157. https://doi.org/10.1016/j.spc.2021.10.001. [CrossRef] [Google Scholar]
- Sekar M., Kumar T.P., Kumar M.S.G., Vaníčková R., Maroušek J. (2021) Techno-economic review on short-term anthropogenic emissions of air pollutants and particulate matter, Fuel 305, 121544. https://doi.org/10.1016/j.fuel.2021.121544. [CrossRef] [Google Scholar]
- Liaquat A.M., Kalam M.A., Masjuki H.H., Jayed M.H. (2010) Potential emissions reduction in road transport sector using biofuel in developing countries, Atmos. Environ. 44, 32, 3869–3877. https://doi.org/10.1016/j.atmosenv.2010.07.003. [CrossRef] [Google Scholar]
- Fan J.L., Yu H., Wei Y.M. (2015) Residential energy-related carbon emissions in urban and rural China during 1996–2012: From the perspective of five end-use activities, Energy Build. 96, 201–209. https://doi.org/10.1016/j.enbuild.2015.03.026. [CrossRef] [Google Scholar]
- Ren F., Long D. (2021) Carbon emission forecasting and scenario analysis in Guangdong Province based on optimized fast learning network, J. Clean. Prod. 317, 128408. https://doi.org/10.1016/j.jclepro.2021.128408. [CrossRef] [Google Scholar]
- Bakay M.S., Ağbulut Ü. (2021) Electricity production based forecasting of greenhouse gas emissions in Turkey with deep learning, support vector machine and artificial neural network algorithms, J. Clean. Prod. 285, 125324. https://doi.org/10.1016/j.jclepro.2020.125324. [CrossRef] [Google Scholar]
- Gürel A.E., Ağbulut Ü., Ergün A., Ceylan I. (2020) Environmental and economic assessment of a low energy consumption household refrigerator, Eng. Sci. Technol. Int. J. 23, 2, 365–372. https://doi.org/10.1016/j.jestch.2019.06.003. [Google Scholar]
- Solak A.O. (2013) Türkiye’de ulaştırma sektörü enerji tüketiminin azaltılması: bir senaryo yaklaşımı, Ekonomik ve Sosyal Araştırmalar Dergisi. 125–140. https://dergipark.org.tr/en/pub/esad/issue/6061/81512 (in Turkish). [Google Scholar]
- MENR (2020). Energy balance tables. Available at https://www.eigm.gov.tr/tr-TR/Denge-Tablolari/Denge-Tablolari (accessed May 21, 2020). [Google Scholar]
- Isik M., Sarica K., Ari I. (2020) Driving forces of Turkey’s transportation sector CO2 emissions: An LMDI approach, Transp. Policy 97, 210–219. https://doi.org/10.1016/j.tranpol.2020.07.006. [CrossRef] [Google Scholar]
- Hill G., Heidrich O., Creutzig F., Blythe P. (2019) The role of electric vehicles in near-term mitigation pathways and achieving the UK’s carbon budget, Appl. Energy 251, 113111. https://doi.org/10.1016/j.apenergy.2019.04.107. [CrossRef] [Google Scholar]
- Lander L., Kallitsis E., Hales A., Edge J.S., Korre A., Offer G. (2021) Cost and carbon footprint reduction of electric vehicle lithium-ion batteries through efficient thermal management, Appl. Energy 289, 116737. https://doi.org/10.1016/j.apenergy.2021.116737. [CrossRef] [Google Scholar]
- Gryparis E., Papadopoulos P., Leligou H.C., Psomopoulos C.S. (2020) Electricity demand and carbon emission in power generation under high penetration of electric vehicles. A European Union perspective, Energy Rep. 6, 475–486. https://doi.org/10.1016/j.egyr.2020.09.025. [CrossRef] [Google Scholar]
- Yesilyurt M.K., Aydin M., Yilbasi Z., Arslan M. (2020) Investigation on the structural effects of the addition of alcohols having various chain lengths into the vegetable oil-biodiesel-diesel fuel blends: An attempt for improving the performance, combustion, and exhaust emission characteristics of a compression ignition engine, Fuel 269, 117455. https://doi.org/10.1016/j.fuel.2020.117455. [CrossRef] [Google Scholar]
- Yaman H., Doğan B., Yeşilyurt M.K., Erol D. (2021) Application of higher-order alcohols (1-Hexanol-C6 and 1-Heptanol-C7) in a spark-ignition engine: analysis and assessment, Arab. J. Sci. Eng. 46 12, 11937–11961. https://doi.org/10.1007/s13369-021-05765-7. [CrossRef] [Google Scholar]
- Gülüm M., Yesilyurt M.K., Bilgin A. (2020) The modeling and analysis of transesterification reaction conditions in the selection of optimal biodiesel yield and viscosity, Environ. Sci. Pollut. Res. 27, 10, 10351–10366. https://doi.org/10.1007/s11356-019-07473-0. [CrossRef] [PubMed] [Google Scholar]
- Bozdağ A., Dokuz Y., Gökçek Ö.B. (2020) Spatial prediction of PM10 concentration using machine learning algorithms in Ankara, Turkey. Environ. Pollut. 263, 114635. https://doi.org/10.1016/j.envpol.2020.114635. [CrossRef] [Google Scholar]
- Ozturk S., Ozturk F. (2018) Forecasting energy consumption of Turkey by Arima model, J. Asian Sci. Res. 8, 2, 52–60. https://doi.org/10.18488/journal.2.2018.82.52.60. [Google Scholar]
- Asteris P.G., Skentou A.D., Bardhan A., Samui P., Lourenço P.B. (2021) Soft computing techniques for the prediction of concrete compressive strength using non-destructive tests, Const. Build. Mater. 303, 124450. https://doi.org/10.1016/j.conbuildmat.2021.124450. [CrossRef] [Google Scholar]
- Hajihassani M., Abdullah S.S., Asteris P.G., Armaghani D.J. (2019) A gene expression programming model for predicting tunnel convergence, Appl. Sci. 9, 21, 4650. https://doi.org/10.3390/app9214650. [CrossRef] [Google Scholar]
- Chen H., Asteris P.G., Jahed Armaghani D., Gordan B., Pham B.T. (2019) Assessing dynamic conditions of the retaining wall: developing two hybrid intelligent models, Appl. Sci. 9, 6, 1042. https://doi.org/10.3390/app9061042. [CrossRef] [Google Scholar]
- Asteris P.G., Tsaris A.K., Cavaleri L., Repapis C.C., Papalou A., Di Trapani F., Karypidis D.F. (2016) Prediction of the fundamental period of infilled RC frame structures using artificial neural networks, Comput. Intell. Neurosci. 2016, 5104907. https://doi.org/10.1155/2016/5104907. [CrossRef] [Google Scholar]
- Ye L., Xie N., Hu A. (2021) A novel time-delay multivariate grey model for impact analysis of CO2 emissions from China’s transportation sectors, Appl. Math. Model. 91, 493–507. https://doi.org/10.1016/j.apm.2020.09.045. [CrossRef] [MathSciNet] [Google Scholar]
- Wang W., Wang J. (2021) Determinants investigation and peak prediction of CO2 emissions in China’s transport sector utilizing bio-inspired extreme learning machine, Environ. Sci. Pollut. Res. 28, 39, 55535–55553. https://doi.org/10.1007/s11356-021-14852-z. [CrossRef] [PubMed] [Google Scholar]
- Ratanavaraha V., Jomnonkwao S. (2015) Trends in Thailand CO2 emissions in the transportation sector and policy mitigation, Transp. Policy 41, 136–146. https://doi.org/10.1016/j.tranpol.2015.01.007. [CrossRef] [Google Scholar]
- Li X., Ren A., Li Q. (2022) Exploring patterns of transportation-related CO2 emissions using machine learning methods, Sustainability 14, 8, 4588. https://doi.org/10.3390/su14084588. [CrossRef] [Google Scholar]
- Lotfalipour M.R., Falahi M.A., Bastam M. (2013) Prediction of CO2 emissions in Iran using grey and ARIMA models, Int. J. Energy Econ. Policy 3, 3, 229–237. https://dergipark.org.tr/en/download/article-file/361229. [Google Scholar]
- Ofosu-Adarkwa J., Xie N., Javed S.A. (2020) Forecasting CO2 emissions of China’s cement industry using a hybrid Verhulst-GM (1, N) model and emissions’ technical conversion, Renew. Sust. Energ. Rev. 130, 109945. https://doi.org/10.1016/j.rser.2020.109945. [CrossRef] [Google Scholar]
- Chen X., Shuai C., Wu Y., Zhang Y. (2020) Analysis on the carbon emission peaks of China’s industrial, building, transport, and agricultural sectors, Sci. Total Environ. 709, 135768. https://doi.org/10.1016/j.scitotenv.2019.135768. [CrossRef] [Google Scholar]
- Javed S.A., Cudjoe D. (2022) A novel grey forecasting of greenhouse gas emissions from four industries of China and India, Sustain. Prod. Consum. 29, 777–790. https://doi.org/10.1016/j.spc.2021.11.017. [CrossRef] [Google Scholar]
- Bakır H., Ağbulut Ü., Gürel A.E., Yıldız G., Güvenç U., Soudagar M.E.M., Hoang A.T., Deepanraj B., Saini G., Afzal A. (2022) Forecasting of future greenhouse gas emission trajectory for India using energy and economic indexes with various metaheuristic algorithms, J. Clean. Prod. 360, 131946. https://doi.org/10.1016/j.jclepro.2022.131946. [CrossRef] [Google Scholar]
- Wang Q., Li S., Pisarenko Z. (2020) Modeling carbon emission trajectory of China, US and India, J. Clean. Prod. 258, 120723. https://doi.org/10.1016/j.jclepro.2020.120723. [CrossRef] [Google Scholar]
- Singh P.K., Pandey A.K., Ahuja S., Kiran R. (2022) Multiple forecasting approach: a prediction of CO2 emission from the paddy crop in India, Environ. Sci. Pollut. Res. 29, 17, 25461–25472. https://doi.org/10.1007/s11356-021-17487-2. [CrossRef] [PubMed] [Google Scholar]
- Ari I., Koksal M.A. (2011) Carbon dioxide emission from the Turkish electricity sector and its mitigation options, Energy Policy 39, 10, 6120–6135. https://doi.org/10.1016/j.enpol.2011.07.012. [CrossRef] [Google Scholar]
- Lu I.J., Lewis C., Lin S.J. (2009) The forecast of motor vehicle, energy demand and CO2 emission from Taiwan’s road transportation sector, Energy Policy 37, 8, 2952–2961. https://doi.org/10.1016/j.enpol.2009.03.039. [CrossRef] [Google Scholar]
- Yilmaz H., Yilmaz M. (2013) Forecasting CO2 emissions for Turkey by using the grey prediction method, Sigma 31, 141–148. https://sigma.yildiz.edu.tr/storage/upload/pdfs/1636020414-tr.pdf. [Google Scholar]
- Sonmez M., Akgüngör A.P., Bektaş S. (2017) Estimating transportation energy demand in Turkey using the artificial bee colony algorithm, Energy 122, 301–310. https://doi.org/10.1016/j.energy.2017.01.074. [CrossRef] [Google Scholar]
- Eyuboglu K., Uzar U. (2020) The impact of tourism on CO2 emission in Turkey, Curr. Issues in Tour. 23, 13, 1631–1645. https://doi.org/10.1080/13683500.2019.1636006. [CrossRef] [Google Scholar]
- Uzlu E. (2021) Estimates of greenhouse gas emission in Turkey with grey wolf optimizer algorithm-optimized artificial neural networks, Neural. Comput. Appl. 33, 20, 13567–13585. https://doi.org/10.1007/s00521-021-05980-1. [CrossRef] [Google Scholar]
- Zhu C., Wang M., Du W. (2020) Prediction on peak values of carbon dioxide emissions from the Chinese transportation industry based on the SVR model and scenario analysis, J. Adv. Transp. 2020, 8848149. https://doi.org/10.1155/2020/8848149. [Google Scholar]
- World Bank(2020) Turkey, Available at https://www.worlddata.info/asia/turkey/index.php. [Google Scholar]
- TGDH (2020) Turkish general directorate of highways, 2020, Highways Transportation Statistics, Available at http://www.eigm.gov.tr/en-US/. [Google Scholar]
- TurkStat (2023) Vehicle-kilometer Statistics, Available at https://data.tuik.gov.tr/Bulten/Index?p=49527&dil=2 (accessed 30 January 2023). [Google Scholar]
- Eryilmaz T., Yesilyurt M.K., Taner A., Celik S.A. (2015) Prediction of kinematic viscosities of biodiesels derived from edible and non-edible vegetable oils by using artificial neural networks, Arab. J. Sci. Eng. 40, 3745–3758. https://doi.org/10.1007/s13369-015-1831-6. [CrossRef] [Google Scholar]
- Swinscow T.D.V., Campbell M.J. (2002) Statistics at square one, BMJ, London, pp. 111–125. Available at http://publish.uwo.ca/~gzou2/Stats_at_Square1.pdf. [Google Scholar]
- Hidecker M.J.C., Ho N.T., Dodge N., Hurvitz E.A., Slaughter J., Workinger M.S., Kent R.D., Rosenbaum P., Lenski M., Messaros B.M., Vanderbeek S.B., Deroos S., Paneth N. (2012) Inter-relationships of functional status in cerebral palsy: analyzing gross motor function, manual ability, and communication function classification systems in children, Dev. Med. Child Neurol. 54, 8, 737–742. https://doi.org/10.1111/j.1469-8749.2012.04312.x. [CrossRef] [PubMed] [Google Scholar]
- Nguyen G., Dlugolinsky S., Bobák M., Tran V., Lopez Garcia A., Heredia I., Malík P., Hluchý L. (2019) Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey, Artif. Intell. Rev. 52, 1, 77–124. https://doi.org/10.1007/s10462-018-09679-z. [CrossRef] [Google Scholar]
- Sarker I.H., Furhad M.H., Nowrozy R. (2021) Ai-driven cybersecurity: an overview, security intelligence modeling and research directions, SN Comput. Sci. 2, 1–18. https://doi.org/10.1007/s42979-021-00557-0. [CrossRef] [Google Scholar]
- Google trends (2022) Available at https://trends.google.com/trends/. [Google Scholar]
- Asteris P.G., Nozhati S., Nikoo M., Cavaleri L., Nikoo M. (2019) Krill herd algorithm-based neural network in structural seismic reliability evaluation, Mech. Adv. Mater. Struct. 26, 13, 1146–1153. https://doi.org/10.1080/15376494.2018.1430874. [CrossRef] [Google Scholar]
- Dave V.S., Dutta K. (2014) Neural network based models for software effort estimation: a review, Artif. Intell. Rev. 42, 2, 295–307. https://doi.org/10.1007/s10462-012-9339-x. [CrossRef] [Google Scholar]
- Tokar A.S., Johnson P.A. (1999) Rainfall-runoff modeling using artificial neural networks, J. Hydrol. Eng. 4, 3, 232–239. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:3(232). [CrossRef] [Google Scholar]
- Singh G., Sachan M. (2014) Multi-layer perceptron (MLP) neural network technique for offline handwritten Gurmukhi character recognition, in: Karthikeyan M. (ed.), International Conference on Computational Intelligence and Computing Research (ICCIC), IEEE, pp. 1–5. https://doi.org/10.1109/ICCIC.2014.7238334. [Google Scholar]
- Kolchinsky A., Lourenço A., Li L., Rocha L.M. (2013) Evaluation of linear classifiers on articles containing pharmacokinetic evidence of drug-drug interactions, in: R.B. Altman, L. Hunter, M.D. Ritchie, T. Murray, T.E. Klein (eds), Biocomputing 2013, World Scientific Publishing, pp. 409–420. https://doi.org/10.1142/9789814447973_0040. [Google Scholar]
- Wen Z., Shi J., Li Q., He B., Chen J. (2018) ThunderSVM: A fast SVM library on GPUs and CPUs, J. Mach. Learn. Res. 19, 1, 797–801. https://www.jmlr.org/papers/volume19/17-740/17-740.pdf. [Google Scholar]
- Kohli S., Godwin G.T., Urolagin S. (2021) Sales prediction using linear and KNN regression, in: S. Patnaik, X.-S. Yang, I.K. Sethi (eds), Advances in Machine Learning and Computational Intelligence, Proceedings of ICMLCI 2019, Springer, Singapore, pp. 321–329. https://doi.org/10.1007/978-981-15-5243-4_29. [Google Scholar]
- Pradeep K.R., Naveen N.C. (2018) Lung cancer survivability prediction based on performance using classification techniques of support vector machines, C4.5 and Naive Bayes algorithms for healthcare analytics, Procedia Comput. Sci. 132, 412–420. https://doi.org/10.1016/j.procs.2018.05.162. [CrossRef] [Google Scholar]
- De Caigny A., Coussement K., De Bock K.W. (2018) A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees, Eur. J. Oper. Res. 269, 2, 760–772. https://doi.org/10.1016/j.ejor.2018.02.009. [CrossRef] [MathSciNet] [Google Scholar]
- Popescu M.C., Balas V.E., Perescu-Popescu L., Mastorakis N. (2009) Multilayer perceptron and neural networks, WSEAS Trans. Circuits Syst. 8, 7, 579–588. https://www.academia.edu/download/69679997/29-485.pdf. [Google Scholar]
- Oquab M., Bottou L., Laptev I., Sivic J. (2015) Is object localization for free? Weakly-supervised learning with convolutional neural networks, in: LeCun Y. (ed), Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 685–694, https://doi.org/10.1109/CVPR.2015.7298668. [Google Scholar]
- Armaghani D.J., Asteris P.G. (2021) A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength, Neural. Comput. Appl. 33, 9, 4501–4532. https://doi.org/10.1007/s00521-020-05244-4. [CrossRef] [Google Scholar]
- Friedman J.H. (2001) Greedy function approximation: a gradient boosting machine, Ann. Stat. 29, 1189–1232. https://www.jstor.org/stable/2699986. [Google Scholar]
- Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay É. (2011) Scikit-learn: machine learning in Python, J. Mach. Learn. Res. 12, 2825–2830. https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https [MathSciNet] [Google Scholar]
- Dong W., Huang Y., Lehane B., Ma G. (2020) XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring, Automat. Constr. 114, 103155. https://doi.org/10.1016/j.autcon.2020.103155. [CrossRef] [Google Scholar]
- Möller A., Ruhlmann-Kleider V., Leloup C., Neveu J., Palanque-Delabrouille N., Rich J., Carlberg R., Lidman C., Pritchet C. (2016) (2016) Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning, J. Cosmol. Astropart. Phys. 2016, 12, 008. https://doi.org/10.1088/1475-7516/2016/12/008. [CrossRef] [Google Scholar]
- Sarker I.H. (2021) Machine learning: Algorithms, real-world applications and research directions, SN Comput. Sci. 2, 3, 1–21. https://doi.org/10.1007/s42979-021-00592-x. [CrossRef] [Google Scholar]
- Quej V.H., Almorox J., Ibrakhimov M., Saito L. (2016) Empirical models for estimating daily global solar radiation in Yucatán Peninsula, Mexico, Energy Convers. Manag. 110, 448–456. https://doi.org/10.1016/j.enconman.2015.12.050. [CrossRef] [Google Scholar]
- Notton G., Voyant C. (2018) Forecasting of intermittent solar energy resource, in: Yahyaoui I. (ed), Advances in renewable energies and power technologies, Elsevier, pp. 77–114. https://doi.org/10.1016/B978-0-12-812959-3.00003-4. [CrossRef] [Google Scholar]
- Fan J., Wang X., Wu L., Zhang F., Bai H., Lu X., Xiang Y. (2018) New combined models for estimating daily global solar radiation based on sunshine duration in humid regions: a case study in South China, Energy Convers. Manag. 156, 618–625. https://doi.org/10.1016/j.enconman.2017.11.085. [CrossRef] [Google Scholar]
- Manju S., Sandeep M. (2019) Prediction and performance assessment of global solar radiation in Indian cities: A comparison of satellite and surface measured data, J. Clean. Prod. 230, 116–128. https://doi.org/10.1016/j.jclepro.2019.05.108. [CrossRef] [Google Scholar]
- Voyant C., Notton G., Kalogirou S., Nivet M.L., Paoli C., Motte F., Fouilloy A. (2017) Machine learning methods for solar radiation forecasting: A review, Renew. Energy 105, 569–582. https://doi.org/10.1016/j.renene.2016.12.095. [CrossRef] [Google Scholar]
- Gouda S.G., Hussein Z., Luo S., Yuan Q. (2019) Model selection for accurate daily global solar radiation prediction in China, J. Clean. Prod. 221, 132–144. https://doi.org/10.1016/j.jclepro.2019.02.211. [CrossRef] [Google Scholar]
- Ağbulut Ü., Gürel A.E., Biçen Y. (2021) Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison, Renew. Sust. Energ. Rev. 135, 110114. https://doi.org/10.1016/j.rser.2020.110114. [CrossRef] [Google Scholar]
- Mohamed Z.E., Farouk R.M., Saleh H.H. (2018) The Performance Evaluation of Mathematical Models for Predicting MAD-GSR in Egypt, Glob. J. Pure Appl. Math. 14, 7, 897–918. https://www.ripublication.com/gjpam18/gjpamv14n7_01.pdf. [Google Scholar]
- Singla P., Duhan M., Saroha S. (2022) Different normalization techniques as data preprocessing for one step ahead forecasting of solar global horizontal irradiance, in: Dubey A.K., Narang S.K., Srivastav A.L., Kumar A., García-Díaz V. (eds),Artificial intelligence for renewable energy systems, Woodhead Publishing, pp. 209–230. https://doi.org/10.1016/B978-0-323-90396-7.00004-3. [CrossRef] [Google Scholar]
- Guermoui M., Rabehi A., Gairaa K., Benkaciali S. (2018) Support vector regression methodology for estimating global solar radiation in Algeria, Eur. Phys. J. Plus 133, 1–9. https://doi.org/10.1140/epjp/i2018-11845-y. [CrossRef] [Google Scholar]
- Apostolopoulou M., Asteris P.G., Armaghani D.J., Douvika M.G., Lourenço P.B., Cavaleri L., Bakolas A., Moropoulou A. (2020) Mapping and holistic design of natural hydraulic lime mortars, Cem. Concr. Res. 136, 106167. https://doi.org/10.1016/j.cemconres.2020.106167. [CrossRef] [Google Scholar]
- Asteris P.G., Koopialipoor M., Armaghani D.J., Kotsonis E.A., Lourenço P.B. (2021) Prediction of cement-based mortars compressive strength using machine learning techniques, Neural. Comput. Appl. 33, 19, 13089–13121. https://doi.org/10.1007/s00521-021-06004-8. [CrossRef] [Google Scholar]
- Yesilyurt M.K. (2018) The evaluation of a direct injection diesel engine operating with waste cooking oil biodiesel in point of the environmental and enviroeconomic aspects, Energy Sources A Recovery Util. Environ. Eff. 40, 6, 654–661. https://doi.org/10.1080/15567036.2018.1454546. [Google Scholar]
- Trading Economics (2023) Available at https://tradingeconomics.com/commodity/carbon (accessed April 12, 2023). [Google Scholar]
- TPAO (2023). Türkiye Petrolleri Anonim Ortaklığı Genel Müdürlüğü. 2021 Ham Petrol ve Doğal Gaz Sektör Raporu. https://www.tpao.gov.tr/file/2206/2021-petrol-ve-dogal-gaz-sektor-raporu-861629db02eb5624.pdf (accessed March 14, 2023). [Google Scholar]
- DGEA (2021) Directorate general of energy affairs, Available at https://enerji.gov.tr/eigm (accessed June 18, 2021). [Google Scholar]
- Gürel A.E., Daşdemir A. (2011) Economical and environmental effects of thermal insulation thickness in four different climatic regions of Turkey, Int. J. Renew. Energy Res. 1, 1, 1–10. https://dergipark.org.tr/en/pub/ijrer/issue/16088/168432. [Google Scholar]
- Efe Ş., Ceviz M.A., Temur H. (2018) Comparative engine characteristics of biodiesels from hazelnut, corn, soybean, canola and sunflower oils on DI diesel engine, Renew. Energy 119, 142–151. https://doi.org/10.1016/j.renene.2017.12.011. [CrossRef] [Google Scholar]
- Kumar A., Subramanian K.A. (2017) Control of greenhouse gas emissions (CO2, CH4 and N2O) of a biodiesel (B100) fueled automotive diesel engine using increased compression ratio, Appl. Therm. Eng. 127, 95–105. https://doi.org/10.1016/j.applthermaleng.2017.08.015. [CrossRef] [Google Scholar]
- Kargı V.S.A. (2014) A comparison of artificial neural networks and multiple linear regression models as in predictors of fabric weft defects, Text. Appar. 24, 3, 309–316. https://dergipark.org.tr/en/pub/tekstilvekonfeksiyon/issue/23645/251871. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.