Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
The Role of Negative Emissions Technologies in 2050 Decarbonation Pathways
|
|
---|---|---|
Article Number | 3 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.2516/stet/2023043 | |
Published online | 09 January 2024 |
- Gielen D., Boshell F., Saygin D., Bazilian M.D., Wagner N., Gorini R. (2019) The role of renewable energy in the global energy transformation. Energy Strategy Rev. 24, 38–50. [CrossRef] [Google Scholar]
- Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN), Department of Economic and Social Affairs. https://sdgs.un.org/publications/special-report-renewable-energy-sources-and-climate-change-mitigation-srren-17262. [Google Scholar]
- Castello D., Pedersen T.H., Rosendahl L.A. (2018) Continuous hydrothermal liquefaction of biomass: a critical review. Energies 11, 11, 3165. [CrossRef] [Google Scholar]
- Waldersee V., Levine A.J. (2021) Is your electric car as eco-friendly as you thought? Reuters. https://www.reuters.com/business/cop/is-your-electric-car-eco-friendly-you-thought-2021-11-10/. [Google Scholar]
- EVs Will Drive A Lithium Supply Crunch – IEEE Spectrum. https://spectrum.ieee.org/evs-to-drive-a-lithium-supply-crunch. [Google Scholar]
- Winton N. (2021) Lithium Shortage May Stall Electric Car Revolution and Embed China’s Lead. https://www.forbes.com/sites/neilwinton/2021/11/14/lithium-shortage-may-stall-electric-car-revolution-and-embed-chinas-lead-report/. [Google Scholar]
- Shahan Z. (2016) Why hydrogen fuel cell cars are not competitive — from a hydrogen fuel cell expert. June 17, 2016, Energypost.eu, https://energypost.eu/hydrogen-fuel-cell-cars-competitive-hydrogen-fuel-cell-expert/. [Google Scholar]
- Kamei T. (2012) Recent research of thorium molten-salt reactor from a sustainability viewpoint. Sustainability 4, 2399–2418. [CrossRef] [Google Scholar]
- Dolan T.J. (2017) Molten Salt Reactors and Thorium Energy. Woodhead Publishing. [Google Scholar]
- Pikula K., Zakharenko A., Stratidakis A., Razgonova M., Nosyrev A., Mezhuev Y., Tsatsakis A., Golokhvast K. (2020) The advances and limitations in biodiesel production: feedstocks, oil extraction methods, production, and environmental life cycle assessment. Green Chem. Lett. Rev. 13, 4, 275–294. https://doi.org/10.1080/17518253.2020.1829099. [CrossRef] [Google Scholar]
- Quintero F., González J.M., de Vicente Álvarez J., Arellano J.E., Rosales S. (2017) Biofuels from vegetable oils as alternative fuels advantages and disadvantages, in: Surfactants in Tribology, Vol. 5, CRC Press, pp. 201–237. https://doi.org/10.1201/9781315120829-13. [CrossRef] [Google Scholar]
- Datta A., Hossain A., Roy S. (2019) An overview on biofuels and their advantages and disadvantages. Asian J. Chem. 31, 1851–1858. [CrossRef] [Google Scholar]
- Ting L.R.L., García-Muelas R., Martín A.J., Veenstra F.L.P., Chen S.T.J., Peng Y., Per E.Y.X., Pablo-García S., López N., Pérez-Ramírez J., Yeo B.S. (2020) Electrochemical reduction of carbon dioxide to 1-butanol on oxide-derived copper. Angew. Chem. Int. Ed. Engl. 59, 21072. [CrossRef] [Google Scholar]
- Kaza S., Yao L.C., Bhada-Tata P., Van Woerden F. (2018) What a Waste 2.0 – A Global Snapshot of Solid Waste Management to 2050. The World Bank Group. https://doi.org/10.1596/978-1-4648-1329-0. [CrossRef] [Google Scholar]
- Geyer R., Jambeck J.R., Law K.L. (2017) Production, use, and fate of all plastics ever made, Sci. Adv. 3, 7, e1700782. [CrossRef] [Google Scholar]
- Montoya J.I., Chejne-Janna F., Garcia-Pérez M. (2015) Pirólisis rápida de biomasas: una revisión de los aspectos relevantes. Parte I: estudio paramétrico. DYNA 82, 239–248. [CrossRef] [Google Scholar]
- Pandey A., Stöcker M., Sukumaran R.K. (2015) Recent Advances in Thermo-Chemical Conversion of Biomass, Elsevier. https://doi.org/10.1016/b978-0-444-63289-0.09996-8. [Google Scholar]
- Shah A.A., Sharma K., Haider M.S., Toor S.S., Rosendahl L.A., Pedersen T.H., Castello D. (2022) The role of catalysts in biomass hydrothermal liquefaction and biocrude upgrading. Processes 10, 2, 207. [CrossRef] [Google Scholar]
- Weldekidan H., Strezov V., He J., Kumar R., Asumadu-Sarkodie S., Doyi I.N., Jahan S., Kan T., Town G. (2019) Energy conversion efficiency of pyrolysis of chicken litter and rice husk biomass. Energy Fuels 33, 6509–6514. [CrossRef] [Google Scholar]
- Krishania M., Kumar V., Vijay V.K., Malik A. (2012) Opportunities for improvement of process technology for biomethanation processes. Green Process. Synth. 1, 49–59. [Google Scholar]
- Speight J.G. (2015) Occurrence and formation of crude oil and natural gas, in: Subsea and Deepwater Oil and Gas Science and Technology, Gulf Professional Publishing, pp. 1–43. https://doi.org/10.1016/B978-1-85617-558-6.00001-5. [Google Scholar]
- Rudra S. (2019) Hydrothermal Liquefaction for Bio Oil and Chemicals – An Overview. https://www.slideshare.net/SoumanRudra/hydrothermal-liquefaction-for-bio-oil-and-chemicals-an-overview-march-2019. [Google Scholar]
- Gollakota A.R.K., Kishore N., Gu S. (2018) A review on hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 81, 1378–1392. [CrossRef] [Google Scholar]
- Ciuffi B., Loppi M., Rizzo A.M., Chiaramonti D., Rosi L. (2021) Towards a better understanding of the HTL process of lignin-rich feedstock. Sci. Rep. 11, 1–9. [NASA ADS] [CrossRef] [Google Scholar]
- Kumar R. (2022) A review on the modelling of hydrothermal liquefaction of biomass and waste feedstocks. Energy Nexus 5, 100042. [CrossRef] [Google Scholar]
- Luo X., Gong H., He Z., Zhang P., He L. (2021) Recent advances in applications of power ultrasound for petroleum industry. Ultrason. Sonochem. 70, 105337. [CrossRef] [Google Scholar]
- Stebeleva O.P., Minakov A.V. (2021) Application of cavitation in oil processing: an overview of mechanisms and results of treatment. ACS Omega 6, 31411–31420. [CrossRef] [PubMed] [Google Scholar]
- Avvaru B., Venkateswaran N., Uppara P., Iyengar S.B., Katti S.S. (2018) Current knowledge and potential applications of cavitation technologies for the petroleum industry. Ultrason. Sonochem. 42, 493–507. [CrossRef] [Google Scholar]
- Bundhoo Z.M.A., Mohee R. (2018) Ultrasound-assisted biological conversion of biomass and waste materials to biofuels: a review. Ultrason. Sonochem. 40, 298–313. [CrossRef] [Google Scholar]
- Kininge M.M., Gogate P.R. (2022) Intensification of alkaline delignification of sugarcane bagasse using ultrasound assisted approach. Ultrason. Sonochem. 82, 105870. [CrossRef] [Google Scholar]
- Sidana A., Yadav S.K. (2022) Recent developments in lignocellulosic biomass pretreatment with a focus on eco-friendly, non-conventional methods. J. Clean. Prod. 335, 130286. [CrossRef] [Google Scholar]
- Vogt E.T.C., Weckhuysen B.M. (2015) Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 44, 7342–7370. [CrossRef] [PubMed] [Google Scholar]
- Silverstein R.M., Webster F.X., Kiemle D. (2005) Spectrometric Identification of Organic Compounds, 7th ed., Wiley. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.