Numéro |
Sci. Tech. Energ. Transition
Volume 79, 2024
The Role of Negative Emissions Technologies in 2050 Decarbonation Pathways
|
|
---|---|---|
Numéro d'article | 3 | |
Nombre de pages | 8 | |
DOI | https://doi.org/10.2516/stet/2023043 | |
Publié en ligne | 9 janvier 2024 |
- Gielen D., Boshell F., Saygin D., Bazilian M.D., Wagner N., Gorini R. (2019) The role of renewable energy in the global energy transformation. Energy Strategy Rev. 24, 38–50. [CrossRef] [Google Scholar]
- Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN), Department of Economic and Social Affairs. https://sdgs.un.org/publications/special-report-renewable-energy-sources-and-climate-change-mitigation-srren-17262. [Google Scholar]
- Castello D., Pedersen T.H., Rosendahl L.A. (2018) Continuous hydrothermal liquefaction of biomass: a critical review. Energies 11, 11, 3165. [CrossRef] [Google Scholar]
- Waldersee V., Levine A.J. (2021) Is your electric car as eco-friendly as you thought? Reuters. https://www.reuters.com/business/cop/is-your-electric-car-eco-friendly-you-thought-2021-11-10/. [Google Scholar]
- EVs Will Drive A Lithium Supply Crunch – IEEE Spectrum. https://spectrum.ieee.org/evs-to-drive-a-lithium-supply-crunch. [Google Scholar]
- Winton N. (2021) Lithium Shortage May Stall Electric Car Revolution and Embed China’s Lead. https://www.forbes.com/sites/neilwinton/2021/11/14/lithium-shortage-may-stall-electric-car-revolution-and-embed-chinas-lead-report/. [Google Scholar]
- Shahan Z. (2016) Why hydrogen fuel cell cars are not competitive — from a hydrogen fuel cell expert. June 17, 2016, Energypost.eu, https://energypost.eu/hydrogen-fuel-cell-cars-competitive-hydrogen-fuel-cell-expert/. [Google Scholar]
- Kamei T. (2012) Recent research of thorium molten-salt reactor from a sustainability viewpoint. Sustainability 4, 2399–2418. [CrossRef] [Google Scholar]
- Dolan T.J. (2017) Molten Salt Reactors and Thorium Energy. Woodhead Publishing. [Google Scholar]
- Pikula K., Zakharenko A., Stratidakis A., Razgonova M., Nosyrev A., Mezhuev Y., Tsatsakis A., Golokhvast K. (2020) The advances and limitations in biodiesel production: feedstocks, oil extraction methods, production, and environmental life cycle assessment. Green Chem. Lett. Rev. 13, 4, 275–294. https://doi.org/10.1080/17518253.2020.1829099. [CrossRef] [Google Scholar]
- Quintero F., González J.M., de Vicente Álvarez J., Arellano J.E., Rosales S. (2017) Biofuels from vegetable oils as alternative fuels advantages and disadvantages, in: Surfactants in Tribology, Vol. 5, CRC Press, pp. 201–237. https://doi.org/10.1201/9781315120829-13. [CrossRef] [Google Scholar]
- Datta A., Hossain A., Roy S. (2019) An overview on biofuels and their advantages and disadvantages. Asian J. Chem. 31, 1851–1858. [CrossRef] [Google Scholar]
- Ting L.R.L., García-Muelas R., Martín A.J., Veenstra F.L.P., Chen S.T.J., Peng Y., Per E.Y.X., Pablo-García S., López N., Pérez-Ramírez J., Yeo B.S. (2020) Electrochemical reduction of carbon dioxide to 1-butanol on oxide-derived copper. Angew. Chem. Int. Ed. Engl. 59, 21072. [CrossRef] [Google Scholar]
- Kaza S., Yao L.C., Bhada-Tata P., Van Woerden F. (2018) What a Waste 2.0 – A Global Snapshot of Solid Waste Management to 2050. The World Bank Group. https://doi.org/10.1596/978-1-4648-1329-0. [CrossRef] [Google Scholar]
- Geyer R., Jambeck J.R., Law K.L. (2017) Production, use, and fate of all plastics ever made, Sci. Adv. 3, 7, e1700782. [CrossRef] [Google Scholar]
- Montoya J.I., Chejne-Janna F., Garcia-Pérez M. (2015) Pirólisis rápida de biomasas: una revisión de los aspectos relevantes. Parte I: estudio paramétrico. DYNA 82, 239–248. [CrossRef] [Google Scholar]
- Pandey A., Stöcker M., Sukumaran R.K. (2015) Recent Advances in Thermo-Chemical Conversion of Biomass, Elsevier. https://doi.org/10.1016/b978-0-444-63289-0.09996-8. [Google Scholar]
- Shah A.A., Sharma K., Haider M.S., Toor S.S., Rosendahl L.A., Pedersen T.H., Castello D. (2022) The role of catalysts in biomass hydrothermal liquefaction and biocrude upgrading. Processes 10, 2, 207. [CrossRef] [Google Scholar]
- Weldekidan H., Strezov V., He J., Kumar R., Asumadu-Sarkodie S., Doyi I.N., Jahan S., Kan T., Town G. (2019) Energy conversion efficiency of pyrolysis of chicken litter and rice husk biomass. Energy Fuels 33, 6509–6514. [CrossRef] [Google Scholar]
- Krishania M., Kumar V., Vijay V.K., Malik A. (2012) Opportunities for improvement of process technology for biomethanation processes. Green Process. Synth. 1, 49–59. [Google Scholar]
- Speight J.G. (2015) Occurrence and formation of crude oil and natural gas, in: Subsea and Deepwater Oil and Gas Science and Technology, Gulf Professional Publishing, pp. 1–43. https://doi.org/10.1016/B978-1-85617-558-6.00001-5. [Google Scholar]
- Rudra S. (2019) Hydrothermal Liquefaction for Bio Oil and Chemicals – An Overview. https://www.slideshare.net/SoumanRudra/hydrothermal-liquefaction-for-bio-oil-and-chemicals-an-overview-march-2019. [Google Scholar]
- Gollakota A.R.K., Kishore N., Gu S. (2018) A review on hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 81, 1378–1392. [CrossRef] [Google Scholar]
- Ciuffi B., Loppi M., Rizzo A.M., Chiaramonti D., Rosi L. (2021) Towards a better understanding of the HTL process of lignin-rich feedstock. Sci. Rep. 11, 1–9. [NASA ADS] [CrossRef] [Google Scholar]
- Kumar R. (2022) A review on the modelling of hydrothermal liquefaction of biomass and waste feedstocks. Energy Nexus 5, 100042. [CrossRef] [Google Scholar]
- Luo X., Gong H., He Z., Zhang P., He L. (2021) Recent advances in applications of power ultrasound for petroleum industry. Ultrason. Sonochem. 70, 105337. [CrossRef] [Google Scholar]
- Stebeleva O.P., Minakov A.V. (2021) Application of cavitation in oil processing: an overview of mechanisms and results of treatment. ACS Omega 6, 31411–31420. [CrossRef] [PubMed] [Google Scholar]
- Avvaru B., Venkateswaran N., Uppara P., Iyengar S.B., Katti S.S. (2018) Current knowledge and potential applications of cavitation technologies for the petroleum industry. Ultrason. Sonochem. 42, 493–507. [CrossRef] [Google Scholar]
- Bundhoo Z.M.A., Mohee R. (2018) Ultrasound-assisted biological conversion of biomass and waste materials to biofuels: a review. Ultrason. Sonochem. 40, 298–313. [CrossRef] [Google Scholar]
- Kininge M.M., Gogate P.R. (2022) Intensification of alkaline delignification of sugarcane bagasse using ultrasound assisted approach. Ultrason. Sonochem. 82, 105870. [CrossRef] [Google Scholar]
- Sidana A., Yadav S.K. (2022) Recent developments in lignocellulosic biomass pretreatment with a focus on eco-friendly, non-conventional methods. J. Clean. Prod. 335, 130286. [CrossRef] [Google Scholar]
- Vogt E.T.C., Weckhuysen B.M. (2015) Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 44, 7342–7370. [CrossRef] [PubMed] [Google Scholar]
- Silverstein R.M., Webster F.X., Kiemle D. (2005) Spectrometric Identification of Organic Compounds, 7th ed., Wiley. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.