Open Access
Review
Issue |
Sci. Tech. Energ. Transition
Volume 78, 2023
|
|
---|---|---|
Article Number | 27 | |
Number of page(s) | 34 | |
DOI | https://doi.org/10.2516/stet/2023021 | |
Published online | 13 October 2023 |
- Abrajano T.A., Sturchio N.C., Bohlke J.K., Lyon G.L., Poreda R.J., Stevens C.M. (1988) Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: Deep or shallow origin? Chem. Geol. 71, 1–3, 211–222. https://doi.org/10.1016/0009-2541(88)90116-7. [CrossRef] [Google Scholar]
- Aftabi A., Atapour H., Mohseni S., Babaki A. (2021) Geochemical discrimination among different types of banded iron formations (BIFs): A comparative review, Ore Geol. Rev. 136, 104244. https://doi.org/10.1016/j.oregeorev.2021.104244. [CrossRef] [Google Scholar]
- Arnason B. (1977) The hydrogen-water isotope thermometer applied to geothermal areas in Iceland, Geothermics 5, 1, 75–80. https://doi.org/10.1016/0375-6505(77)90011-6. [CrossRef] [Google Scholar]
- Ballentine C.J., Burnard P.G. (2002) Production, release and transport of noble gases in the continental crust, Rev. Mineral. Geochem. 47, 1, 481–538. https://doi.org/10.2138/rmg.2002.47.12. [CrossRef] [Google Scholar]
- Barbier S., Huang F., Andreani M., Tao R., Hao J., Eleish A., Prabhu A., Minhas O., Fontaine K., Fox P., Daniel I. (2020) A review of H2, CH4, and hydrocarbon formation in experimental serpentinization using network analysis, Front. Earth Sci. 8, 209. https://doi.org/10.3389/feart.2020.00209. [CrossRef] [Google Scholar]
- Barnes I., Lamarche V.C., Himmelberg G. (1967) Geochemical evidence of present-day serpentinization, Science 156, 3776, 830–832. https://doi.org/10.1126/science.156.3776.830. [CrossRef] [Google Scholar]
- Behar F., Beaumont V., Penteado H.L.D.B. (2001) Rock-Eval 6 technology: performances and Developments, Oil Gas Sci. Technol. 56, 2, 111–134. https://doi.org/10.2516/ogst:2001013. [CrossRef] [Google Scholar]
- Boreham C.J., Edwards D.S., Czado K., Rollet N., Wang L., Van Der Wielen S., Champion D., Blewett R., Feitz A., Henson P.A. (2021) Hydrogen in Australian natural gas: Occurrences, sources and resources, APPEA J. 61, 1, 163. https://doi.org/10.1071/AJ20044. [CrossRef] [Google Scholar]
- Boreham C.J., Edwards D.S., Feitz A.J., Murray A.P., Mahlstedt N., Horsfield B., Boreham C.J., Edwards D.S., Feitz A.J., Murray A.P., Mahlstedt N., Horsfield B. (2023) Modelling of hydrogen gas generation from overmature organic matter in the Cooper Basin, Australia, APPEA J. 63, 2, S351–S356. https://doi.org/10.1071/AJ22084. [CrossRef] [Google Scholar]
- Bradshaw M., Rees S., Wang L., Szczepaniak M., Cook W., Voegeli S., Boreham C., Wainman C., Wong S., Southby C., Feitz A., Bradshaw M., Rees S., Wang L., Szczepaniak M., Cook W., Voegeli S., Boreham C., Wainman C., Wong S., Southby C., Feitz A. (2023) Australian salt basins – options for underground hydrogen storage, APPEA J. 63, 1, 285–304. https://doi.org/10.1071/AJ22153. [CrossRef] [Google Scholar]
- Caliro S., Viveiros F., Chiodini G., Ferreira T. (2015) Gas geochemistry of hydrothermal fluids of the S. Miguel and Terceira Islands, Azores, Geochim. Cosmochim. Acta 168, 43–57. https://doi.org/10.1016/j.gca.2015.07.009. [CrossRef] [Google Scholar]
- Cathles L., Prinzhofer A. (2020) What pulsating H2 emissions suggest about the H2 resource in the Sao Francisco Basin of Brazil, Geosciences 10, 4, 149. https://doi.org/10.3390/geosciences10040149. [CrossRef] [Google Scholar]
- Charlou J.L., Donval J.P., Jean-Baptiste P., Dapoigny A., Rona P.A. (1996) Gases and helium isotopes in high temperature solutions sampled before and after ODP Leg 158 drilling at TAG Hydrothermal Field (26 N, MAR), Geophys. Res. Lett. 23, 23, 3491–3494. https://doi.org/10.1029/96GL02141. [CrossRef] [Google Scholar]
- Chavagnac V., Monnin C., Ceuleneer G., Boulart C., Hoareau G. (2013) Characterization of hyperalkaline fluids produced by low-temperature serpentinization of mantle peridotites in the Oman and Ligurian ophiolites, Geochem. Geophys. Geosyst. 14, 7, 2496–2522. https://doi.org/10.1002/ggge.20147. [CrossRef] [Google Scholar]
- Combaudon V., Moretti I., Kleine B.I., Stefánsson A. (2022) Hydrogen emissions from hydrothermal in Iceland and comparison with the Mid-Atlantic Ridge, Int. J. Hydrog. Energy. https://doi.org/10.1016/j.ijhydene.2022.01.101. [Google Scholar]
- Coveney R.M., Goebel E.D., Zeller E.J., Dreschhoff G.A.M., Angino E.E. (1987) Serpentinization and the origin of hydrogen gas in Kansas, Am. Assoc. Pet. Geol. Bull. 71, 1, 39–48. https://doi.org/10.1306/94886D3F-1704-11D7-8645000102C1865D. [Google Scholar]
- Cox G.W. (1987) The origin of vegetation circles on stony soils of the Namib Desert near Gobabeb, South West Africa/Namibia, J. Arid Environ. 13, 3, 237–243. https://doi.org/10.1016/S0140-1963(18)31112-1. [CrossRef] [Google Scholar]
- Darling W.G., Talbot J.C. (2003) The O & H stable isotopic composition of fresh waters in the British Isles. 1. Rainfall, Hydrol. Earth Syst. Sci. 7, 2, 163–182. [CrossRef] [Google Scholar]
- Deville E., Prinzhofer A. (2016) The origin of N2-H2-CH4-rich natural gas seepages in ophiolitic context: a major and noble gases study of fluid seepages in New Caledonia, Chem. Geol. 440, 139–147. https://doi.org/10.1016/j.chemgeo.2016.06.011. [CrossRef] [Google Scholar]
- Diallo A., Cissé C.S.T., Lemay J., Brière D.J. (2022) La découverte de l’hydrogène naturel par Hydroma, un « Game Changer » pour la transition énergétique, Annales des Mines – Réalités industrielles 2022, 4, 154–160. https://doi.org/10.3917/rindu1.224.0154. [CrossRef] [Google Scholar]
- Espitalie J., Madec M., Tissot B. (1980) Role of mineral matrix in kerogen pyrolysis: Influence on petroleum generation and migration, Am. Assoc. Pet. Geol. Bull. 64, 59–66. https://doi.org/10.1306/2F918928-16CE-11D7-8645000102C1865D. [Google Scholar]
- Etiope G. (2017) Abiotic methane in continental serpentinization sites: An overview, Procedia Earth Planet. Sci. 17, 9–12. https://doi.org/10.1016/j.proeps.2016.12.006. [CrossRef] [Google Scholar]
- Etiope G. (2023) Massive release of natural hydrogen from a geological seep (Chimaera, Turkey): Gas advection as a proxy of subsurface gas migration and pressurised accumulations, Int. J. Hydrog. Energy 48, 25, 9172–9184. https://doi.org/10.1016/j.ijhydene.2022.12.025. [CrossRef] [Google Scholar]
- Etiope G., Schoell M., Hosgörmez H. (2011) Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): Understanding gas exhalation from low temperature serpentinization and implications for Mars, Earth Planet. Sci. Lett. 310, 1–2, 96–104. https://doi.org/10.1016/j.epsl.2011.08.001. [CrossRef] [Google Scholar]
- Etiope G., Vadillo I., Whiticar M.J., Marques J.M., Carreira P.M., Tiago I., Benavente J., Jiménez P., Urresti B. (2016) Abiotic methane seepage in the Ronda peridotite massif, southern Spain, Appl. Geochem. 66, 101–113. https://doi.org/10.1016/j.apgeochem.2015.12.001. [CrossRef] [Google Scholar]
- Etiope G., Samardžić N., Grassa F., Hrvatović H., Miošić N., Skopljak F. (2017) Methane and hydrogen in hyperalkaline groundwaters of the serpentinized Dinaride ophiolite belt, Bosnia and Herzegovina, Appl. Geochem. 84, 286–296. https://doi.org/10.1016/j.apgeochem.2017.07.006. [CrossRef] [Google Scholar]
- Firstov P.P., Shirokov V.A. (2005) Dynamics of molecular hydrogen and its relation to deformational processes at the Petropavlovsk-Kamchatskii geodynamic test site: Evidence from observations in 1999–2003, Geochem. Int. 43, 11, 1056–1064. [Google Scholar]
- Frery E., Langhi L., Maison M., Moretti I. (2021) Natural hydrogen seeps identified in the North Perth Basin, Western Australia, Int. J. Hydrog. Energy 46, 61, 31158–31173. https://doi.org/10.1016/j.ijhydene.2021.07.023. [CrossRef] [Google Scholar]
- Furnes H., Dilek Y., de Wit M. (2015) Precambrian greenstone sequences represent different ophiolite types, Gondwana Res. 27, 2, 649–685. https://doi.org/10.1016/j.gr.2013.06.004. [CrossRef] [Google Scholar]
- Gaucher E., Moretti I., Pélissier N., Burridge G., Gonthier N. (2023) The place of natural hydrogen in the energy transition: A position paper, Eur. Geol. 55, 5–9. [Google Scholar]
- Geymond U., Ramanaidou E., Lévy D., Ouaya A., Moretti I. (2022) Can weathering of banded iron formations generate natural hydrogen? Evidence from Australia, Brazil and South Africa, Minerals 12, 2, 163. https://doi.org/10.3390/min12020163. [CrossRef] [Google Scholar]
- Geymond U., Briolet T., Combaudon V., Sissmann O., Martinez I., Duttine M., Moretti I. (2023) Reassessing the role of magnetite during natural hydrogen generation, Front. Earth Sci. 11, 1169356. https://doi.org/10.3389/feart.2023.1169356. [CrossRef] [Google Scholar]
- Grozeva N.G., Klein F., Seewald J.S., Sylva S.P. (2017) Experimental study of carbonate formation in oceanic peridotite, Geochim. Cosmochim. Acta 199, 264–286. https://doi.org/10.1016/j.gca.2016.10.052. [CrossRef] [Google Scholar]
- Guélard J., Beaumont V., Rouchon V., Guyot F., Pillot D., Jézéquel D., Ader M., Newell K.D., Deville E. (2017) Natural H2 in Kansas: Deep or shallow origin? Geochem. Geophys. Geosyst. 18, 5, 1841–1865. https://doi.org/10.1002/2016GC006544. [CrossRef] [Google Scholar]
- Halford D.T., Karolytė R., Barry P.H., Whyte C.J., Darrah T.H., Cuzella J.J., Sonnenberg S.A., Ballentine C.J. (2022) High helium reservoirs in the Four Corners area of the Colorado Plateau, USA. Chem. Geol. 596, 120790. https://doi.org/10.1016/j.chemgeo.2022.120790. [CrossRef] [Google Scholar]
- Hirose T., Kawagucci S., Suzuki K. (2011) Mechanoradical H2 generation during simulated faulting: Implications for an earthquake-driven subsurface biosphere, Geophys. Res. Lett. 38, 17, L17303. https://doi.org/10.1029/2011GL048850. [Google Scholar]
- Horibe Y., Craig H. (1995) D/H fractionation in the system methane-hydrogen-water, Geochim. Cosmochim. Acta 59, 24, 5209–5217. https://doi.org/10.1016/0016-7037(95)00391-6. [CrossRef] [Google Scholar]
- Horsfield B., Mahlstedt N., Weniger P., Misch D., Vranjes-Wessely S., Han S., Wang C. (2022) Molecular hydrogen from organic sources in the deep Songliao Basin, PR China. Int. J. Hydrog. Energy 47, 38, 16750–16774. https://doi.org/10.1016/j.ijhydene.2022.02.208. [CrossRef] [Google Scholar]
- Karolytė R., Warr O., van Heerden E., Flude S., de Lange F., Webb S., Ballentine C.J., Sherwood Lollar B. (2022) The role of porosity in H2/He production ratios in fracture fluids from the Witwatersrand Basin, South Africa, Chem. Geol. 595, 120788. https://doi.org/10.1016/j.chemgeo.2022.120788. [CrossRef] [Google Scholar]
- Kiyosu Y. (1983) Hydrogen isotopic compositions of hydrogen and methane from some volcanic areas in northeastern Japan, Earth Planet. Sci. Lett. 62, 1, 41–52. https://doi.org/10.1016/0012-821X(83)90069-9. [CrossRef] [Google Scholar]
- Klein F., Bach W., McCollom T.M. (2013) Compositional controls on hydrogen generation during serpentinization of ultramafic rocks, Lithos 178, 55–69. https://doi.org/10.1016/j.lithos.2013.03.008. [CrossRef] [Google Scholar]
- Klein F., Marschall H.R., Bowring S.A., Humphris S.E., Horning G. (2017) Mid-ocean ridge serpentinite in the Puerto Rico Trench: From seafloor spreading to subduction, J. Petrol. 58, 9, 1729–1754. https://doi.org/10.1093/petrology/egx071. [CrossRef] [Google Scholar]
- Klein F., Grozeva N.G., Seewald J.S. (2019) Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions, Proc. Natl. Acad. Sci 116, 36, 17666–17672. https://doi.org/10.1073/pnas.1907871116. [CrossRef] [PubMed] [Google Scholar]
- Larin N., Zgonnik V., Rodina S., Deville E., Prinzhofer A., Larin V.N. (2015) Natural molecular hydrogen seepage associated with surficial, rounded depressions on the European Craton in Russia, Nat. Resour. Res. 24, 3, 369–383. https://doi.org/10.1007/s11053-014-9257-5. [CrossRef] [Google Scholar]
- Lefeuvre N., Truche L., Donzé F.-V., Ducoux M., Barré G., Fakoury R.-A., Calassou S., Gaucher E.C. (2021) Native H2 exploration in the Western Pyrenean Foothills, Geochem. Geophys. Geosyst. 22, 8, e2021GC009917. https://doi.org/10.1029/2021GC009917. [CrossRef] [Google Scholar]
- Lefeuvre N., Truche L., Donzé F.-V., Gal F., Tremosa J., Fakoury R.-A., Calassou S., Gaucher E.C. (2022) Natural hydrogen migration along thrust faults in foothill basins: The North Pyrenean Frontal Thrust case study, Appl. Geochem. 145, 105396. https://doi.org/10.1016/j.apgeochem.2022.105396. [CrossRef] [Google Scholar]
- Leila M., Lévy D., Battani A., Piccardi L., Šegvić B., Badurina L., Pasquet G., Combaudon V., Moretti I. (2021) Origin of continuous hydrogen flux in gas manifestations at the Larderello geothermal field, Central Italy, Chem. Geol. 585, 120564. https://doi.org/10.1016/j.chemgeo.2021.120564. [CrossRef] [Google Scholar]
- Leila M., Loiseau K., Moretti I. (2022) Controls on generation and accumulation of blended gases (CH4/H2/He) in the Neoproterozoic Amadeus Basin, Australia. Mar. Pet. Geol. 140, 105643. https://doi.org/10.1016/j.marpetgeo.2022.105643. [CrossRef] [Google Scholar]
- Lévy D., Callot J.-P., Moretti I., Duttine M., Dubreuil B., De Parseval P., Boudouma O. (2022) Successive phases of serpentinization and carbonation recorded in the Sivas ophiolite (Turkey), from oceanic crust accretion to post-obduction alteration, BSGF – Earth Sci. Bull. 193, 12. https://doi.org/10.1051/bsgf/2022015. [CrossRef] [EDP Sciences] [Google Scholar]
- Lévy D., Boka-Mene M., Meshi A., Fejza I., Guermont T., Hauville B., Pelissier N. (2023) Looking for natural hydrogen in Albania and Kosova, Front. Earth Sci. 11, 1167634. https://doi.org/10.3389/feart.2023.1167634. [CrossRef] [Google Scholar]
- Lin L.-H., Hall J., Lippmann-Pipke J., Ward J., Lollar B., Deflaun M., Rothmel R., Moser D., Gihring T., Mislowack B., Onstott T. (2005) Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities, Geochem. Geophys. Geosyst. 6, Q07003. https://doi.org/10.1029/2004GC000907. [Google Scholar]
- Lopez-Lazaro C., Bachaud P., Moretti I., Ferrando N. (2019) Predicting the phase behavior of hydrogen in NaCl brines by molecular simulation for geological applications, BSGF – Earth Sci. Bull. 190, 7. https://doi.org/10.1051/bsgf/2019008. [CrossRef] [EDP Sciences] [Google Scholar]
- Mahlstedt N., Horsfield B., Weniger P., Misch D., Shi X., Noah M., Boreham C. (2022) Molecular hydrogen from organic sources in geological systems, J. Nat. Gas Sci. Eng. 105, 104704. https://doi.org/10.1016/j.jngse.2022.104704. [CrossRef] [Google Scholar]
- Maiga O., Deville E., Laval J., Prinzhofer A., Diallo A.B. (2023) Characterization of the spontaneously recharging natural hydrogen reservoirs of Bourakebougou in Mali, Sci. Rep. 13, 1, 11876. https://doi.org/10.1038/s41598-023-38977-y. [CrossRef] [Google Scholar]
- Malvoisin B., Brunet F. (2023) Barren ground depressions, natural H2 and orogenic gold deposits: Spatial link and geochemical model, Sci. Total Environ. 856, 158969. https://doi.org/10.1016/j.scitotenv.2022.158969. [CrossRef] [Google Scholar]
- Martín-Hernández F., Lüneburg C.M., Aubourg C., Jackson M. (2004) Magnetic fabric: Methods and applications – an introduction, Geol. Soc. Spec. Publ. 238, 1–7. https://doi.org/10.1144/GSL.SP.2004.238.01.01. [CrossRef] [Google Scholar]
- McCollom T.M., Bach W. (2009) Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks, Geochim. Cosmochim. Acta 73, 3, 856–875. https://doi.org/10.1016/j.gca.2008.10.032. [CrossRef] [Google Scholar]
- McCollom T.M., Klein F., Robbins M., Moskowitz B., Berquó T.S., Jöns N., Bach W., Templeton A. (2016) Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine, Geochim. Cosmochim. Acta 181, 175–200. https://doi.org/10.1016/j.gca.2016.03.002. [CrossRef] [Google Scholar]
- Mével C. (2003) Serpentinization of abyssal peridotites at mid-ocean ridges, CR Geosci. 335, 10, 825–852. https://doi.org/10.1016/j.crte.2003.08.006. [CrossRef] [Google Scholar]
- Milesi V., Guyot F., Brunet F., Richard L., Recham N., Benedetti M., Dairou J., Prinzhofer A. (2015) Formation of CO2, H2 and condensed carbon from siderite dissolution in the 200–300 °C range and at 50 MPa, Geochim. Cosmochim. Acta 154, 201–211. https://doi.org/10.1016/j.gca.2015.01.015. [CrossRef] [Google Scholar]
- Miller H.M., Mayhew L.E., Ellison E.T., Kelemen P., Kubo M., Templeton A.S. (2017) Low temperature hydrogen production during experimental hydration of partially-serpentinized dunite, Geochim. Cosmochim. Acta 209, 161–183. https://doi.org/10.1016/j.gca.2017.04.022. [CrossRef] [Google Scholar]
- Moretti I., Brouilly E., Loiseau K., Prinzhofer A., Deville E. (2021a) Hydrogen emanations in intracratonic areas: New guide lines for early exploration basin screening, Geosciences 11, 3, 145. https://doi.org/10.3390/geosciences11030145. [CrossRef] [Google Scholar]
- Moretti I., Prinzhofer A., Françolin J., Pacheco C., Rosanne M., Rupin F., Mertens J. (2021b) Long-term monitoring of natural hydrogen superficial emissions in a Brazilian cratonic environment. Sporadic large pulses versus daily periodic emissions, Int. J. Hydrog. Energy 46, 5, 3615–3628. https://doi.org/10.1016/j.ijhydene.2020.11.026. [CrossRef] [Google Scholar]
- Moretti I., Geymond U., Pasquet G., Aimar L., Rabaute A. (2022) Natural hydrogen emanations in Namibia: Field acquisition and vegetation indexes from multispectral satellite image analysis, Int. J. Hydrog. Energy 47, 84, 35588–35607. https://doi.org/10.1016/j.ijhydene.2022.08.135. [CrossRef] [Google Scholar]
- Moretti I., Baby P., Alvarez Zapata P., Mendoza R.V. (2023) Subduction and hydrogen release: The case of Bolivian Altiplano, Geosciences 13, 4, 109. https://doi.org/10.3390/geosciences13040109. [CrossRef] [Google Scholar]
- Myagkiy A., Brunet F., Popov C., Krüger R., Guimarães H., Sousa R.S., Charlet L., Moretti I. (2020a) H2 dynamics in the soil of a H2-emitting zone (São Francisco Basin, Brazil): Microbial uptake quantification and reactive transport modelling, Appl. Geochem. 112, 104474. https://doi.org/10.1016/j.apgeochem.2019.104474. [CrossRef] [Google Scholar]
- Myagkiy A., Moretti I., Brunet F. (2020b) Space and time distribution of subsurface H2 concentration in so-called “fairy circles”: Insight from a conceptual 2-D transport model, BSGF – Earth Sci. Bull. 191, 13. https://doi.org/10.1051/bsgf/2020010. [CrossRef] [EDP Sciences] [Google Scholar]
- Neal C., Stanger G. (1983) Hydrogen generation from mantle source rocks in Oman, Earth Planet. Sci. Lett. 66, 315–320. https://doi.org/10.1016/0012-821X(83)90144-9. [CrossRef] [Google Scholar]
- Neubeck A., Duc N.T., Bastviken D., Crill P., Holm N.G. (2011) Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70 °C, Geochem. Trans. 12, 1, 6. https://doi.org/10.1186/1467-4866-12-6. [CrossRef] [Google Scholar]
- Nivin V.A. (2019) Occurrence forms, composition, distribution, origin and potential hazard of natural hydrogen–hydrocarbon gases in ore deposits of the Khibiny and Lovozero Massifs: A Review, Minerals 9, 9, 535. https://doi.org/10.3390/min9090535. [CrossRef] [Google Scholar]
- Okland I., Huang S., Thorseth I.H., Pedersen R.B. (2014) Formation of H2, CH4 and N-species during low-temperature experimental alteration of ultramafic rocks, Chem. Geol. 387, 22–34. https://doi.org/10.1016/j.chemgeo.2014.08.003. [CrossRef] [Google Scholar]
- Pasquet G., Houssein Hassan R., Sissmann O., Varet J., Moretti I. (2021) An attempt to study natural H2 resources across an oceanic ridge penetrating a continent: The Asal-Ghoubbet Rift (Republic of Djibouti), Geosciences 12, 1, 16. https://doi.org/10.3390/geosciences12010016. [CrossRef] [Google Scholar]
- Pasquet G., Idriss A.M., Ronjon-Magand L., Ranchou-Peyruse M., Guignard M., Duttine M., Ranchou-Peyruse A., Moretti I. (2023) Natural hydrogen potential and basaltic alteration in the Asal-Ghoubbet rift, Republic of Djibouti, BSGF – Earth Sci. Bull. 194, 9. https://doi.org/10.1051/bsgf/2023004. [CrossRef] [EDP Sciences] [Google Scholar]
- Potter J., Salvi S., Longstaffe F.J. (2013) Abiogenic hydrocarbon isotopic signatures in granitic rocks: Identifying pathways of formation, Lithos 182–183, 114–124. https://doi.org/10.1016/j.lithos.2013.10.001. [CrossRef] [Google Scholar]
- Prinzhofer A., Cacas-Stentz M.-C. (2023) Natural hydrogen and blend gas: a dynamic model of accumulation, Int. J. Hydrog. Energy 48, 57, 21610–21623. https://doi.org/10.1016/j.ijhydene.2023.03.060. [CrossRef] [Google Scholar]
- Prinzhofer A., Tahara Cissé C.S., Diallo A.B. (2018) Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali), Int. J. Hydrog. Energy 43, 42, 19315–19326. https://doi.org/10.1016/j.ijhydene.2018.08.193. [CrossRef] [Google Scholar]
- Prinzhofer A., Moretti I., Françolin J., Pacheco C., D’Agostino A., Werly J., Rupin F. (2019) Natural hydrogen continuous emission from sedimentary basins: The example of a Brazilian H2-emitting structure, Int. J. Hydrog. Energy 44, 12, 5676–5685. https://doi.org/10.1016/j.ijhydene.2019.01.119. [CrossRef] [Google Scholar]
- Proskurowski G., Lilley M.D., Kelley D.S., Olson E.J. (2006) Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer, Chem. Geol. 229, 4, 331–343. https://doi.org/10.1016/j.chemgeo.2005.11.005. [CrossRef] [Google Scholar]
- Proskurowski G., Lilley M.D., Seewald J.S., Früh-Green G.L., Olson E.J., Lupton J.E., Sylva S.P., Kelley D.S. (2008) Abiogenic hydrocarbon production at Lost City Hydrothermal Field, Science 319, 5863, 604–607. https://doi.org/10.1126/science.1151194. [CrossRef] [PubMed] [Google Scholar]
- Randazzo P., Caracausi A., Aiuppa A., Cardellini C., Chiodini G., D’Alessandro W., Li Vigni L., Papic P., Marinkovic G., Ionescu A. (2021) Active degassing of deeply sourced fluids in central Europe: New evidences from a geochemical study in Serbia, Geochem. Geophys. Geosyst. 22, 11, e2021GC010017. https://doi.org/10.1029/2021GC010017. [CrossRef] [Google Scholar]
- Ricci A., Kleine B.I., Fiebig J., Gunnarsson-Robin J., Mativo Kamunya K., Mountain B., Stefánsson A. (2022) Equilibrium and kinetic controls on molecular hydrogen abundance and hydrogen isotope fractionation in hydrothermal fluids, Earth Planet. Sci. Lett. 579, 117338. https://doi.org/10.1016/j.epsl.2021.117338. [CrossRef] [Google Scholar]
- Rigollet C., Prinzhofer A. (2022) Natural hydrogen: A new source of carbon-free and renewable energy that can compete with hydrocarbons, First Break 40, 10, 78–84. https://doi.org/10.3997/1365-2397.fb2022087. [CrossRef] [Google Scholar]
- Rochette P., Ellert B., Gregorich E.G., Desjardins R.L., Pattey E., Lessard R., Johnson B.G. (1997) Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques, Can. J. Soil Sci. 77, 2, 195–203. https://doi.org/10.4141/S96-110. [CrossRef] [Google Scholar]
- Rosanne M. (2020). PARHyS System: A new approach to H2 concentration measurements in the subsurface, in: 27e édition de la Réunion des Sciences de la Terre, Lyon, 2021. [Google Scholar]
- Salvi S., Williams-Jones A.E. (1997) Fischer-Tropsch synthesis of hydrocarbons during sub-solidus alteration of the Strange Lake peralkaline granite, Quebec/Labrador, Canada, Geochim. Cosmochim. Acta 61, 1, 83–99. https://doi.org/10.1016/S0016-7037(96)00313-4. [CrossRef] [Google Scholar]
- Sato M., Sutton A.J., McGee K.A., Russell-Robinson S. (1986) Monitoring of hydrogen along the San Andreas and Calaveras faults in central California in 1980–1984, J. Geophys. Res. Solid Earth 91, B12, 12315–12326. https://doi.org/10.1029/JB091iB12p12315. [CrossRef] [Google Scholar]
- Sherwood B., Fritz P., Frape S.K., Macko S.A., Weise S.M., Welhan J.A. (1988) Methane occurrences in the Canadian Shield, Chem. Geol. 71, 1–3, 223–236. https://doi.org/10.1016/0009-2541(88)90117-9. [CrossRef] [Google Scholar]
- Sherwood Lollar B., Frape S.K., Fritz P., Macko S.A., Welhan J.A., Blomqvist R., Lahermo P.W. (1993) Evidence for bacterially generated hydrocarbon gas in Canadian shield and fennoscandian shield rocks, Geochim. Cosmochim. Acta 57, 23–24, 5073–5085. https://doi.org/10.1016/0016-7037(93)90609-Z. [CrossRef] [Google Scholar]
- Sherwood Lollar B., Lacrampe-Couloume G., Slater G.F., Ward J., Moser D.P., Gihring T.M., Lin L.-H., Onstott T.C. (2006) Unravelling abiogenic and biogenic sources of methane in the Earth’s deep subsurface, Chem. Geol. 226, 3–4, 328–339. https://doi.org/10.1016/j.chemgeo.2005.09.027. [CrossRef] [Google Scholar]
- Sherwood Lollar B., Voglesonger K., Lin L.-H., Lacrampe-Couloume G., Telling J., Abrajano T.A., Onstott T.C., Pratt L.M. (2007) Hydrogeologic controls on episodic H2 release from precambrian fractured rocks – energy for deep subsurface life on Earth and Mars, Astrobiology 7, 6, 971–986. https://doi.org/10.1089/ast.2006.0096. [CrossRef] [PubMed] [Google Scholar]
- Sherwood Lollar B., Lacrampe-Couloume G., Voglesonger K., Onstott T.C., Pratt L.M., Slater G.F. (2008) Isotopic signatures of CH4 and higher hydrocarbon gases from Precambrian Shield sites: A model for abiogenic polymerization of hydrocarbons, Geochim. Cosmochim. Acta 72, 19, 4778–4795. https://doi.org/10.1016/j.gca.2008.07.004. [CrossRef] [Google Scholar]
- Simon J., Fulton P., Prinzhofer A., Cathles L. (2020) Earth tides and H2 venting in the Sao Francisco Basin, Brazil, Geosciences 10, 10, 414. https://doi.org/10.3390/geosciences10100414. [CrossRef] [Google Scholar]
- Smith N.J.P., Shepherd T.J., Styles M.T., Williams G.M. (2005) Hydrogen exploration: A review of global hydrogen accumulations and implications for prospective areas in NW Europe, Geol. Soc. London Pet. Geol. Conf. 6, 1, 349–358. https://doi.org/10.1144/0060349. [Google Scholar]
- Suda K., Ueno Y., Yoshizaki M., Nakamura H., Kurokawa K., Nishiyama E., Yoshino K., Hongoh Y., Kawachi K., Omori S., Yamada K., Yoshida N., Maruyama S. (2014) Origin of methane in serpentinite-hosted hydrothermal systems: The CH4–H2–H2O hydrogen isotope systematics of the Hakuba Happo hot spring, Earth Planet. Sci. Lett. 386, 112–125. https://doi.org/10.1016/j.epsl.2013.11.001. [CrossRef] [Google Scholar]
- Suzuki N., Saito H., Hoshino T. (2017) Hydrogen gas of organic origin in shales and metapelites, Int. J. Coal Geol. 173, 227–236. https://doi.org/10.1016/j.coal.2017.02.014. [CrossRef] [Google Scholar]
- Taran Y.A., Varley N.R., Inguaggiato S., Cienfuegos E. (2010) Geochemistry of H2- and CH4-enriched hydrothermal fluids of Socorro Island, Revillagigedo Archipelago, Mexico. Evidence for serpentinization and abiogenic methane: Socorro hydrocarbons, Geofluids 10, 4, 542–555. https://doi.org/10.1111/j.1468-8123.2010.00314.x. [CrossRef] [Google Scholar]
- Theron G.K. (1979) Die verskynsel van kaal kolle in Kaokoland, Suidwes-Afrika, J. South African Biol. Soc. 20, 43–53. [Google Scholar]
- Tinley K.L. (1971) Etosha and the Kaokoveld, Afr. J. Wildl. Res. 25, 1–16. [Google Scholar]
- Truche L., Joubert G., Dargent M., Martz P., Cathelineau M., Rigaudier T., Quirt D. (2018) Clay minerals trap hydrogen in the Earth’s crust: Evidence from the Cigar Lake uranium deposit, Athabasca, Earth Planet. Sci. Lett. 493, 186–197. https://doi.org/10.1016/j.epsl.2018.04.038. [CrossRef] [Google Scholar]
- Truche L., McCollom T.M., Martinez I. (2020) Hydrogen and abiotic hydrocarbons: Molecules that change the world, Elements 16, 1, 13–18. https://doi.org/10.2138/gselements.16.1.13. [CrossRef] [Google Scholar]
- Truche L., Bourdelle F., Salvi S., Lefeuvre N., Zug A., Lloret E. (2021) Hydrogen generation during hydrothermal alteration of peralkaline granite, Geochim. Cosmochim. Acta 308, 42–59. https://doi.org/10.1016/j.gca.2021.05.048. [CrossRef] [Google Scholar]
- Vacquand C., Deville E., Beaumont V., Guyot F., Sissmann O., Pillot D., Arcilla C., Prinzhofer A. (2018) Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures, Geochim. Cosmochim. Acta 223, 437–461. https://doi.org/10.1016/j.gca.2017.12.018. [CrossRef] [Google Scholar]
- Vaughan A.P.M., Scarrow J.H. (2003) Ophiolite obduction pulses as a proxy indicator of superplume events? Earth Planet. Sci. Lett. 213, 3, 407–416. https://doi.org/10.1016/S0012-821X(03)00330-3. [CrossRef] [Google Scholar]
- Wagner S.W., Reicosky D.C., Alessi R.S. (1997) Regression models for calculating gas fluxes measured with a closed chamber, Agron. J. 89, 2, 279–284. https://doi.org/10.2134/agronj1997.00021962008900020021x. [CrossRef] [PubMed] [Google Scholar]
- Ward L.K. (1933) Inflammable gases occluded in the pre-palaezoic rocks of South Australia, Trans. R. Soc. S. Aust. 57, 42–47. [Google Scholar]
- Worman S.L., Pratson L.F., Karson J.A., Schlesinger W.H. (2020) Abiotic hydrogen (H2) sources and sinks near the Mid-Ocean Ridge (MOR) with implications for the subseafloor biosphere, Proc. Natl. Acad. Sci. 117, 24, 13283–13293. https://doi.org/10.1073/pnas.2002619117. [CrossRef] [PubMed] [Google Scholar]
- Xia X., Gao Y. (2022) Validity of geochemical signatures of abiotic hydrocarbon gases on Earth, J. Geol. Soc. 179, 3, jgs2021-077. https://doi.org/10.1144/jgs2021-077. [CrossRef] [Google Scholar]
- Yan J., Liu M., Feng Z., Bai Z., Shui H., Li Z., Lei Z., Wang Z., Ren S., Kang S., Yan H. (2020) Study on the pyrolysis kinetics of low-medium rank coals with distributed activation energy model, Fuel 261, 116359. https://doi.org/10.1016/j.fuel.2019.116359. [CrossRef] [Google Scholar]
- Zgonnik V. (2020) The occurrence and geoscience of natural hydrogen: A comprehensive review, Earth Sci. Rev. 203, 103140. https://doi.org/10.1016/j.earscirev.2020.103140. [CrossRef] [Google Scholar]
- Zgonnik V., Beaumont V., Deville E., Larin N., Pillot D., Farrell K.M. (2015) Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA), Prog. Earth Planet. Sci. 2, 1, 31. https://doi.org/10.1186/s40645-015-0062-5. [CrossRef] [Google Scholar]
- Zhang Q., Grohmann S., Xu X., Littke R. (2020) Depositional environment and thermal maturity of the coal-bearing Longtan Shale in southwest Guizhou, China: Implications for shale gas resource potential, Int. J. Coal Geol. 231, 103607. https://doi.org/10.1016/j.coal.2020.103607. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.