Issue |
Sci. Tech. Energ. Transition
Volume 78, 2023
Characterization and Modeling of the Subsurface in the Context of Ecological Transition
|
|
---|---|---|
Article Number | 10 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.2516/stet/2023004 | |
Published online | 12 April 2023 |
- Gross R., Leach M., Bauen A. (2003) Progress in renewable energy, Environ. Int. 29, 1, 105–122. https://doi.org/10.1016/S0160-4120(02)00130-7. [CrossRef] [Google Scholar]
- Gallo A.B., Simões-Moreira J.R., Costa H., Santos M.M., Moutinho dos Santos E. (2016) Energy storage in the energy transition context: A technology review, Renewable Sustainable Energy Rev. 65, 800–822. https://doi.org/10.1016/j.rser.2016.07.028. [CrossRef] [Google Scholar]
- Ozarslan A. (2012) Large-scale hydrogen energy storage in salt caverns, Int. J. Hydrogen Energy 37, 19, 14265–14277. https://doi.org/10.1016/j.ijhydene.2012.07.111. [CrossRef] [Google Scholar]
- Panfilov M. (2015) Underground and pipeline hydrogen storage, in: B. Subramani, et al. (eds.), Compendium of hydrogen energy, Woodhead Publishing, Sawston, United Kingdom, pp. 91–115. [Google Scholar]
- Réveillère A., Londe L. (2017) Compressed air energy storage: A new beginning? Geostock, France, in: Solution Mining Research Institute Technical Conference, 24–27 September 2017, Münster, Germany. [Google Scholar]
- Lopez-Lazaro C., Bachaud P., Moretti I., Ferrando N. (2019) Predicting the phase behavior of hydrogen in NaCl brines by molecular simulation for geological applications, BSGF – Earth Sci. Bull. 190. https://doi.org/10.1051/bsgf/2019008. [Google Scholar]
- Søreide I., Whitson C.H. (1992) Peng-Robinson predictions for hydrocarbons, CO2, N2 and H2S with pure water and NaCI brine, Fluid Phase Equilib. 77, 217–240. [CrossRef] [Google Scholar]
- Chabab S., Théveneau P., Coquelet C., Corvisier J., Paricaud P. (2020) Measurements and predictive models of high-pressure H2 solubility in brine (H2O+NaCl) for underground hydrogen storage application, Int. J. Hydrogen Energy 45, 56, 32206–32220. [CrossRef] [Google Scholar]
- Schlaikjer A., Thomsen K., Kontogeorgis G.M. (2018) eCPA: An ion-specific approach to parametrization, Fluid Phase Equilib. 470, 176–187. https://doi.org/10.1016/j.fluid.2017.12.008. [CrossRef] [Google Scholar]
- Li D., Beyer C., Bauer S. (2018) A unified phase equilibrium model for hydrogen solubility and solution density, Int. J. Hydrogen Energy 43, 1, 512–529. https://doi.org/10.1016/j.ijhydene.2017.07.228. [CrossRef] [Google Scholar]
- Roa Pinto J.S., Bachaud P., Fargetton T., Ferrando N., Jeannin L., Louvet F. (2021) Modeling phase equilibrium of hydrogen and natural gas in brines: Application to storage in salt caverns, Int. J. Hydrogen Energy 46, 5, 4229–4240. https://doi.org/10.1016/j.ijhydene.2020.10.242. [CrossRef] [Google Scholar]
- Zhu Z., Cao Y., Zheng Z., Chen D. (2022) An accurate model for estimating H2 solubility in pure water and aqueous NaCl solutions, Energies 15, 14. https://doi.org/10.3390/en15145021. [Google Scholar]
- Torín-Ollarves G.A., Trusler J.M. (2021) Solubility of hydrogen in sodium chloride brine at high pressures, Fluid Phase Equilib. 539, 113025. https://doi.org/10.1016/j.fluid.2021.113025. [CrossRef] [Google Scholar]
- van Rooijen W.A., Habibi P., Xu K., Dey P., Vlugt T.J.H., Hajibeygi H., Moultos O.A. (2023) Interfacial tensions, solubilities, and transport properties of the H2/H2O/NaCl system: A molecular simulation study, J. Chem. Eng. Data, https://doi.org/10.1021/acs.jced.2c00707. [Google Scholar]
- Chabab S., Cruz J.L., Poulain M., Ducousso M., Contamine F., Serin J.P., Cézac P. (2021) Thermodynamic modeling of mutual solubilities in gas-laden brines systems containing CO2, CH4, N2, O2, H2, H2O, NaCl, CaCl2, and KCl: Application to degassing in geothermal processes, Energies 14, 17. https://doi.org/10.3390/en14175239. [CrossRef] [Google Scholar]
- Ahmed S., Ferrando N., de Hemptinne J.-C., Simonin J.-P., Bernard O., Baudouin O. (2016) A new PC-SAFT model for pure water, water–hydrocarbons, and water–oxygenates systems and subsequent modeling of VLE, VLLE, and LLE, J. Chem. Eng. Data 61, 12, 4178–4190. https://doi.org/10.1021/acs.jced.6b00565. [CrossRef] [Google Scholar]
- Gross J., Sadowski G. (2002) Application of the perturbed-chain SAFT equation of state to associating systems, Ind. Eng. Chem. Res. 41, 22, 5510–5515. https://doi.org/10.1021/ie010954d. [Google Scholar]
- Boublik T. (1970) Hard sphere equation of state, J. Chem. Phys. 53, 471–473. [CrossRef] [Google Scholar]
- Mansoori G.A., Carnahan N.F., Starling K.E., Leland T.W.J. (1971) Equilibrium thermodynamic properties of the mixture of hard spheres, J. Chem. Phys. 54, 4, 1523–1525. [CrossRef] [Google Scholar]
- Wertheim M.S. (1984) Fluids with Highly directional attractive forces. I. Statistical thermodynamics, J. Stat. Phys. 35, 19–34. [CrossRef] [MathSciNet] [Google Scholar]
- Chapman W.G., Jackson G., Gubbins K.E. (1988) Phase equilibria of associating fluids: Chain molecules with multiple bonding sites, Mol. Phys. 65, 1057–1079. [CrossRef] [Google Scholar]
- Nguyen-Huynh D., Passarello J.-P., Tobaly P., de Hemptinne J.-C. (2008) Application of GC-SAFT EOS to polar systems using a segment approach, Fluid Phase Equilib. 264, 1, 62–75. https://doi.org/10.1016/j.fluid.2007.10.019. [CrossRef] [Google Scholar]
- Jog P., Chapman W.G. (1999) Application of Wertheim's thermodynamic Perturbation theory to dipolar hard sphere chains, Mol. Phys. 97, 3, 307–319. [CrossRef] [Google Scholar]
- Trinh T.-K.-H., Passarello J.-P., de Hemptinne J.-C., Lugo R., Lachet V. (2016) A non-additive repulsive contribution in an equation of state: The development for homonuclear square well chains equation of state validated against Monte Carlo simulation, J. Chem. Phys. 144, 3, 124902. https://doi.org/10.1063/1.4944068. [CrossRef] [PubMed] [Google Scholar]
- Lyra Paredes M.L., dos Reis R.A., Tavares F.W. (2009) Inner segment radial distribution functions at contact point for chain-like molecules, J. Mol. Liq. 147, 3, 198–210. https://doi.org/10.1016/j.molliq.2009.04.005. [CrossRef] [Google Scholar]
- Liu Z., Wang W., Li Y. (2005) An equation of state for electrolyte solutions by a combination of low-density expansion of non-primitive mean spherical approximation and statistical associating fluid theory, Fluid Phase Equilib. 227, 2, 147–156. https://doi.org/10.1016/j.fluid.2004.11.007. [CrossRef] [Google Scholar]
- Schreckenberg J.M., Dufal S., Haslam A.J., Adjiman C.S., Jackson G., Galindo A. (2014) Modelling of the thermodynamic and solvation properties of electrolyte solutions with the statistical associating fluid theory for potentials of variable range, Mol. Phys. 112, 17, 2339–2364. https://doi.org/10.1080/00268976.2014.910316. [CrossRef] [Google Scholar]
- Tan S.P., Adidharma H., Radosz M. (2005) Statistical associating fluid theory coupled with restricted primitive model to represent aqueous strong electrolytes, Ind. Eng. Chem. Res. 44, 12, 4442–4452. https://doi.org/10.1021/ie048750v. [CrossRef] [Google Scholar]
- Lee B.-S., Kim K.-C. (2009) Modeling of aqueous electrolyte solutions based on perturbed-chain statistical associating fluid theory incorporated with primitive mean spherical approximation. Korean J. Chem. Eng. 26, 6, 1733–1747. [CrossRef] [Google Scholar]
- Rozmus J., de Hemptinne J.C., Galindo A., Dufal S., Mougin P. (2013) Modeling of strong electrolytes with ePPC-SAFT up to high temperatures, Ind. Eng. Chem. Res. 52, 9979–9994. https://doi.org/10.1021/ie303527j. [CrossRef] [Google Scholar]
- Shadloo A., Abolala M., Peyvandi K. (2016) Application of ion-based ePC-SAFT in prediction of density of aqueous electrolyte solutions, J. Mol. Liq. 221, 904–913. https://doi.org/10.1016/j.molliq.2016.06.043. [CrossRef] [Google Scholar]
- Selam M.A., Economou I.G., Castier M. (2018) A thermodynamic model for strong aqueous electrolytes based on the eSAFT-VR Mie equation of state, Fluid Phase Equilib. 464, 47–63. https://doi.org/10.1016/j.fluid.2018.02.018. [CrossRef] [Google Scholar]
- Maribo-Mogensen B., Kontogeorgis G., Thomsen K. (2012) Comparison of the Debye-Hückel and the mean spherical approximation theories for electrolyte solutions, Ind. Eng. Chem. Res. 51, 14, 5353–5363. [CrossRef] [Google Scholar]
- Fawcett W.R. (1999) Thermodynamic parameters for the solvation of monatomic ions in water, J. Phys. Chem. B 103, 50, 11181–11185. https://doi.org/10.1021/jp991802n. [CrossRef] [Google Scholar]
- Pottel R. (1973) Dielectric properties, in: Franks F.(ed.), Water: a comprehensive treatise; Volume 3: Aqueous properties of simple electrolytes, Plenum Press. [Google Scholar]
- NIST and TRC database (2011) Version 2-2011-3-Pro. , National Institute of Standards and Technology/Thermodynamics and Thermodynamics Research Center. [Google Scholar]
- Gibbard H.F. Jr, Scatchard G., Rousseau R.A., Creek J.L. (1974) Liquid-vapor equilibrium of aqueous sodium chloride, from 298 to 373 K and from 1 to 6 mol kg−1, and related properties, J. Chem. Eng. Data 19, 3, 281–288. [CrossRef] [Google Scholar]
- Mokbel I., Ye S., Jose J., Xans P. (1997) Study of non ideality of various aqueous sodium chloride solutions by vapor pressure measurements and correlation of experimental results by Pitzer’s method, J. Chim. Phys. PCB 94, 122–137. [CrossRef] [EDP Sciences] [Google Scholar]
- Liu C.T., Lindsay W.T. Jr (1972) Thermodynamics of sodium chloride solutions at high temperatures, J. Sol. Chem. 1, 1, 45–69. [CrossRef] [Google Scholar]
- Rogers P.S.Z., Pitzer K.S. (1982) Volumetric properties of aqueous sodium chloride solutions, J. Phys. Chem. Ref. Data 11, 1, 15–81. [CrossRef] [Google Scholar]
- Trinh T.-K.-H., de Hemptinne J.-C., Lugo R., Ferrando N., Passarello J.-P. (2016) Hydrogen solubility in hydrocarbon and oxygenated organic compounds, J. Chem. Eng. Data 61, 1, 19–34. https://doi.org/10.1021/acs.jced.5b00119. [CrossRef] [Google Scholar]
- Rowley R.L., Wilding W.V., Oscarson J.L., Knotts T.A. (2006) DIPPR® data compilation of pure chemical properties, Design Institute for Physical Property Data, AIChE, New York, NY. [Google Scholar]
- Gamsjäger H., Lorimer J.W., Salomon M., Shaw D.G., Tomkins R.P.T. (2010) The IUPAC-NIST solubility data series: A guide to preparation and use of compilations and evaluations, J. Phys. Chem. Ref. Data 39, 2. [Google Scholar]
- Morrison T.J., Billett F. (1952) The salting-out of non-electrolytes. Part II. The effect of variation in non-electrolyte, J. Chem. Soc., 3819–3822. https://doi.org/10.1039/JR9520003819. [CrossRef] [Google Scholar]
- Gordon L.I., Cohen Y., Standley D.R. (1977) The solubility of molecular hydrogen in seawater, Deep-Sea Res. 24, 937–941. [CrossRef] [Google Scholar]
- Steiner P. (1894) Ueber die Absorption des Wasserstoffs im Wasser und in wässerigen Lösungen, Ann. Phys. 288, 6, 275–299. https://doi.org/10.1002/andp.18942880605. [CrossRef] [Google Scholar]
- Crozier T.E., Yamamoto S. (1974) Solubility of hydrogen in water, sea water, and sodium chloride solutions, J. Chem. Eng. Data 19, 3, 242–244. https://doi.org/10.1021/je60062a007. [CrossRef] [Google Scholar]
- Cramer S.D. (1982) The solubility of methane, carbon dioxide, and oxygen in brines from 0 degrees to 300 °C, Bur. Mines Rep. Invest. RI 8706, 1–17. [Google Scholar]
- Iwai Y., Eya H., Itoh Y., Aral Y., Takeuchi K. (1993) Measurement and correlation of solubilities of oxygen in aqueous solutions containing salts and sucrose, Fluid Phase Equilib. 83, 271–278. https://doi.org/10.1016/0378-3812(93)87030-5. [CrossRef] [Google Scholar]
- MacArthur C.G. (1916) Solubility of oxygen in salt solutions and the hydrates of these salts, J. Phys. Chem. 20, 495–502. https://doi.org/10.1021/j150168a003. [CrossRef] [Google Scholar]
- Lang W., Zander R. (1986) Salting-out of oxygen from aqueous electrolyte solutions: Prediction and measurement, Ind. Eng. Chem. Fund. 25, 4, 775–782. https://doi.org/10.1021/i100024a050. [CrossRef] [MathSciNet] [Google Scholar]
- Chabab S., Ahmadi P., Théveneau P., Coquelet C., Chapoy A., Corvisier J., Paricaud P. (2021) Measurements and modeling of high-pressure O2 and CO2 solubility in brine (H2O + NaCl) between 303 and 373 K and pressures up to 36 MPa, J. Chem. Eng. Data 66, 1, 609–620. https://doi.org/10.1021/acs.jced.0c00799. [CrossRef] [Google Scholar]
- Braun L. (1900) The absorption of nitrogen and hydrogen in aqueous solutions of various dissociated substances, Z. Phys. Chem. Stoechiom. Verwandtschaftsl. 33, 721–739. [CrossRef] [Google Scholar]
- van Slyke D., Dillon R.T., Margaria R. (1934) Studies of gas and electrolyte equilibria in blood XVIII. Solubility and physical state of atmospheric nitrogen in blood cells and plasma, J. Biol. Chem. 105, 571–596. [CrossRef] [Google Scholar]
- Smith N.O., Kelemen S., Nagy B. (1962) Solubility of natural gases in aqueous salt solutions – II: Nitrogen in aqueous NaCl, CaCl2, Na2SO4 and MgSO4 at room temperatures and at pressures below 1000 psia, Geochim. Cosmochim. Acta 26, 9, 921–926. https://doi.org/10.1016/0016-7037(62)90066-2. [CrossRef] [Google Scholar]
- O’Sullivan T.D., Smith N.O. (1970) The solubility and partial molar volume of Nitrogen and methane in water and in aqueous sodium chloride from 50 to 125 °C and 100 to 600 Atm, J. Phys. Chem. 74, 7, 1460–1466. [CrossRef] [Google Scholar]
- Gillespie P.C., Wilson G.M. (1980) Vapor-liquid equilibrium data on water-substitute gas components: N2-H2O, H2-H2O, CO-H2O, H2-CO-H2O and H2S-H2O, GPA Research Report RR-41. [Google Scholar]
- Alvarez J., Crovetto R., Fernandez-Prini R. (1988) The dissolution of N2 and of H2 in water from room temperature to 640 K, Ber. Bunsen-Ges. Phys. Chem. 92, 935–940. [CrossRef] [Google Scholar]
- Tokunaga J. (1975) Solubilities of oxygen, nitrogen, and carbon dioxide in aqueous alcohol solutions, J. Chem. Eng. Data 20, 1, 41–46. https://doi.org/10.1021/je60064a025. [CrossRef] [Google Scholar]
- Morrison T.J., Billett F. (1948) 413. The measurement of gas solubilities, J. Chem. Soc. 2033–2035. https://doi.org/10.1039/JR9480002033.. [CrossRef] [Google Scholar]
- Yamamoto H., Kamei H., Tokunaga J. (1994) Solubilities of argon, oxygen and nitrogen in 1,2-propanediol + water mixed solvent at 298.15 K and 101.33 kPa, J. Chem. Eng. Jpn. 27, 4, 455–459. https://doi.org/10.1252/jcej.27.455. [CrossRef] [Google Scholar]
- Yamamoto H., Tokunaga J. (1994) Solubilities of nitrogen and oxygen in 1,2-ethanediol + water at 298.15 K and 101.33 kPa, J. Chem. Eng. Data 39, 3, 544–547. https://doi.org/10.1021/je00015a033. [CrossRef] [Google Scholar]
- Yasunishi A. (1977) Solubilities of sparingly soluble gases in aqueous sodium sulfate and sulfite solutions, J. Chem. Eng. Jpn. 10, 2, 89–94. https://doi.org/10.1252/jcej.10.89. [CrossRef] [Google Scholar]
- Adeney W.E., Becker H.G. (1919) XXVIII. The determination of the rate of solution of atmospheric nitrogen and oxygen by water. Part I, Lond. Edinb. Dubl. Phil. Mag. J. Sci., Science 38, 225, 317–337. https://doi.org/10.1080/14786440908635955. [CrossRef] [Google Scholar]
- Behnke A.R., Yarbrough O.D. (1939) Respiratory resistance, oil-water solubility, and mental effects of argon, compared with helium and nitrogen, Am. J. Physiol. – Legacy Content 126, 2, 409–415. https://doi.org/10.1152/ajplegacy.1939.126.2.409. [CrossRef] [Google Scholar]
- Bunsen R. (1855) XV. On the law of absorption of gases, Lond. Edinb. Dubl. Phil. Mag. J. Sci. 9, 57, 116–130. https://doi.org/10.1080/14786445508641836. [CrossRef] [Google Scholar]
- Douglas E. (1964) Solubilities of oxygen, argon, and nitrogen in distilled water, J. Phys. Chem. 68, 1, 169–174. https://doi.org/10.1021/j100783a028. [CrossRef] [Google Scholar]
- Fox C.J.J. (1909) On the coefficients of absorption of nitrogen and oxygen in distilled water and sea-water, and of atmospheric carbonic acid in sea-water, T. Faraday Soc. 5, 68–86. https://doi.org/10.1039/TF9090500068. [CrossRef] [Google Scholar]
- Murray C.N., Riley J.P., Wilson T. (1969) The solubility of gases in distilled water and sea water – I. Nitrogen, Deep Sea Res. Oceanogr. Abs. 16, 3, 297–310. https://doi.org/10.1016/0011-7471(69)90020-5. [CrossRef] [Google Scholar]
- Orcutt F.S., Seevers M.H. (1937) A method for determining the solubility of gases in pure liquids or solutions by the van Slyke-Neill manometric apparatus, J. Biol. Chem. 117, 2, 501–507. https://doi.org/10.1016/S0021-9258(18)74550-X. [CrossRef] [Google Scholar]
- van Slyke D.D. (1939) Determination of solubilities of gases in liquids with use of the van Slyke-Neill manometric apparatus for both saturation and analysis, J. Biol. Chem. 130, 2, 545–554. https://doi.org/10.1016/S0021-9258(18)73525-4. [CrossRef] [Google Scholar]
- Cosgrove B.A., Walkley J. (1981) Solubilities of gases in H2O and 2H2O, J. Chromatogr. A 216, 161–167. https://doi.org/10.1016/S0021-9673(00)82344-4. [CrossRef] [Google Scholar]
- Krieger I.M., Mulholland G.W., Dickey C.S. (1967) Diffusion coefficients for gases in liquids from the rates of solution of small gas bubbles, J. Phys. Chem. 71, 4, 1123–1129. https://doi.org/10.1021/j100863a051. [CrossRef] [Google Scholar]
- Rischbieter E., Schumpe A., Wunder V. (1996) Gas solubilities in aqueous solutions of organic substances, J. Chem. Eng. Data 41, 4, 809–812. https://doi.org/10.1021/je960039c. [CrossRef] [Google Scholar]
- Romero C.M., Garzon L.C., Blanco L.H., Suarez A.F. (2014) Solubility of argon and nitrogen in aqueous solutions of dodecyltrimethylammonium bromide (DTAB) from 283.15 to 298.15 K and 101325 Pa partial pressure of gas, J. Sol. Chem. 43, 6, 1147–1155. https://doi.org/10.1007/s10953-014-0188-x. [CrossRef] [Google Scholar]
- Wilcock R.J., Battino R. (1974) Solubility of oxygen-nitrogen mixture in water, Nature 252, 5484, 614–615. https://doi.org/10.1038/252614c0. [CrossRef] [Google Scholar]
- Benson B.B., Krause D. (1976) Empirical laws for dilute aqueous solutions of nonpolar gases, J. Chem. Phys. 64, 2, 689–709. https://doi.org/10.1063/1.432215. [CrossRef] [Google Scholar]
- Cassuto L. (1903) Sulla solubilità dei gas nei liqdidi, Il Nuovo Cimento (1901–1910) 6, 1, 5–20. https://doi.org/10.1007/BF02718805. [CrossRef] [Google Scholar]
- Costa Gomes M.F., Grolier J.-P. (2001) Determination of Henry’s law constants for aqueous solutions of tetradeuteriomethane between 285 and 325 K and calculation of the H/D isotope effect, Phys. Chem. Chem. Phys. 3, 6, 1047–1052. https://doi.org/10.1039/B008755F. [CrossRef] [Google Scholar]
- Wise D.L., Houghton G. (1969) Solubilities and diffusivities of oxygen in hemolyzed human blood solutions, Biophys. J. 9, 1, 36–53. https://doi.org/10.1016/S0006-3495(69)86367-8. [CrossRef] [Google Scholar]
- Morgan J.L.R., Richardson A.H. (1930) Solubility relations in gas-liquid systems. IV, J. Phys. Chem. 34, 10, 2356–2366. https://doi.org/10.1021/j150316a018. [CrossRef] [Google Scholar]
- Lubarsch O. (1889) Ueber die Absorption von Gasen in Gemischen von Alkohol und Wasser, Ann. Phys. 273, 7, 524–525. https://doi.org/10.1002/andp.18892730714. [CrossRef] [Google Scholar]
- Metschl J. (1924) The supersaturation of gases in water and certain organic liquids, J. Phys. Chem. 28, 5, 417–437. https://doi.org/10.1021/j150239a001. [CrossRef] [Google Scholar]
- Millero F.J., Huang F., Graham T.B. (2003) Solubility of oxygen in some 1-1, 2-1, 1-2, and 2-2 electrolytes as a function of concentration at 25 °C, J. Sol. Chem. 32, 6, 473–487. https://doi.org/10.1023/A:1025301314462. [CrossRef] [Google Scholar]
- Millero F.J., Huang F., Laferiere A.L. (2002) Solubility of oxygen in the major sea salts as a function of concentration and temperature, Mar. Chem. 78, 4, 217–230. https://doi.org/10.1016/S0304-4203(02)00034-8. [CrossRef] [Google Scholar]
- Millero F.J., Huang F., Laferiere A.L. (2002) The solubility of oxygen in the major sea salts and their mixtures at 25 °C, Geochim. Cosmochim. Acta 66, 13, 2349–2359. https://doi.org/10.1016/S0016-7037(02)00838-4. [CrossRef] [Google Scholar]
- Millero F.J., Huang F. (2003) Solubility of oxygen in aqueous solutions of KCl, K2SO4, and CaCl2 as a function of concentration and temperature, J. Chem. Eng. Data 48, 4, 1050–1054. https://doi.org/10.1021/je034031w. [CrossRef] [Google Scholar]
- Montgomery H.A.C., Thom N.S., Cockburn A. (1964) Determination of dissolved oxygen by the winkler method and the solubility of oxygen in pure water and sea water, J. Appl. Chem. 14, 7, 280–296. https://doi.org/10.1002/jctb.5010140704. [Google Scholar]
- Stephan E.F., Hatfield N.N., Peoples R.S., Pray H. (1956) The solubility of gases in water and aqueous uranyl salt solutions at elevated temperatures and pressures, Battelle Mem. Inst. Rep. 1–47. [Google Scholar]
- Rakestraw N.W., Emmel V.M. (1937) The determination of dissolved nitrogen in water, Ind. Eng. Chem. Anal. 9, 7, 344–346. https://doi.org/10.1021/ac50111a020. [CrossRef] [Google Scholar]
- Pettersson O., Sondén K. (1889) Ueber das Absorptionsvermögen des Wassers für die atmosphärischen Gase, Ber. Dtsch. Chem. Ges. 22, 1, 1439–1446. https://doi.org/10.1002/cber.188902201301. [CrossRef] [Google Scholar]
- Nguyen-Huynh D., Tran T.K.S., Tamouza S., Passarello J.P., Tobaly P., de Hemptinne J.C. (2008) Modeling phase equilibria of asymmetric mixtures using a group-contribution SAFT (GC-SAFT) with a k(ij) correlation method based on London’s theory. 2. Application to binary mixtures containing aromatic hydrocarbons, n-alkanes, CO2, N2, and H2S, Ind. Eng. Chem. Res. 47, 22, 8859–8868. [CrossRef] [Google Scholar]
- Trinh T.-K.-H., Passarello J.-P., de Hemptinne J.-C., Lugo R. (2016) Use of a non additive GC-PPC-SAFT equation of state to model hydrogen solubility in oxygenated organic compounds, Fluid Phase Equilib. 429, 177–195. https://doi.org/10.1016/j.fluid.2016.08.003. [CrossRef] [Google Scholar]
- Gross J., Sadowski G. (2001) Perturbed-Chain SAFT: An equation of state based on a perturbation theory for chain molecules, Ind. Eng. Chem. Res. 40, 1244–1260. [CrossRef] [Google Scholar]
- Diamantonis N.I., Economou I.G. (2011) Evaluation of statistical associating fluid theory (SAFT) and perturbed chain-SAFT equations of state for the calculation of thermodynamic derivative properties of fluids related to carbon capture and sequestration, Energ Fuel 25, 7, 3334–3343. https://doi.org/10.1021/ef200387p. [CrossRef] [Google Scholar]
- Ghosh A., Chapman W.G., French R.N. (2003) Gas solubility in hydrocarbons – A SAFT-based approach, Fluid Phase Equilib. 209, 2, 229–243. [CrossRef] [Google Scholar]
- Alanazi A., Bawazeer S., Ali M., Keshavarz A., Hoteit H. (2022) Thermodynamic modeling of hydrogen–water systems with gas impurity at various conditions using cubic and PC-SAFT equations of state, Energy Convers. Manag. X 15, 100257. https://doi.org/10.1016/j.ecmx.2022.100257. [Google Scholar]
- Marcus Y., Hefter G. (2006) Ion pairing, Chem. Rev. 106, 11, 4585–4621. https://doi.org/10.1021/cr040087x. [CrossRef] [PubMed] [Google Scholar]
- Karimi-Jafari M., Gatelier N., Geostock, France (2016) SFRI Fall Meeting, Salzburg, Austria. [Google Scholar]
- Réveillère A., de Laguérie P., Gruget R., Nancy T., Guénel L.,, Geostock, France (2015) SMRI Spring Meeting Rochester, 27–28 April 2015, Rochester, New York, USA. [Google Scholar]
- Bérest P. (2019) Heat transfer in salt caverns, Int. J. Rock Mech. Min. Sci. 120, 82–95. https://doi.org/10.1016/j.ijrmms.2019.06.009. [CrossRef] [Google Scholar]
- Louvet F., Charnavel Y., Portenabe J.C. (2018) Moisture content of gas in salt caverns surface measurements, in: SMRI Fall Meeting Belfast. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.