Open Access
Issue
Sci. Tech. Energ. Transition
Volume 77, 2022
Article Number 12
Number of page(s) 11
DOI https://doi.org/10.2516/stet/2022012
Published online 23 June 2022
  • Ren Y., Cai W.H., Jiang Y.Q. (2018) Numerical study on shell-side flow and heat transfer of spiral-wound heat exchanger under sloshing working conditions, Appl. Therm. Eng. 134, 287–297. [CrossRef] [Google Scholar]
  • White J., Longley H. (2009) FLNG technology shows promise for stranded gas fields, Offshore 69, 11, 78. [Google Scholar]
  • Zhao W.H., Yang J.M., Hu Z.Q., Wei Y.F. (2011) Recent developments on the hydrodynamics of Floating Liquid Natural Gas (FLNG), Ocean Eng. 38, 14–15, 1555–1567. [CrossRef] [Google Scholar]
  • Blume A. (2013) FLNG needs offshore know-how, Hydrocarbon Process. 92, 1, 15–18. [Google Scholar]
  • Kim I.H., No H.C. (2011) Thermal hydraulic performance analysis of a printed circuit heat exchanger using a helium-water test loop and numerical simulations, Appl. Therm. Eng. 31, 4064–4073. [CrossRef] [Google Scholar]
  • Aneesh A.M., Sharma A., Srivastava A., Vyas K.N., Chaudhuri P. (2016) Thermal-hydraulic characteristics and performance of 3D straight channel based printed circuit heat exchanger, Appl. Therm. Eng. 98, 474–482. [CrossRef] [Google Scholar]
  • Liu S.H., Huang Y.P., Wang J.F. (2018) Theoretical and numerical investigation on the fin effectiveness and the fin efficiency of printed circuit heat exchanger with straight channels, Int. J. Therm. Sci. 132, 558–566. [CrossRef] [Google Scholar]
  • Chen M.H., Sun X.D., Christensen R.N., Skavdahl I., Utgikar V., Sabharwall P. (2018) Dynamic behavior of a high-temperature printed circuit heat exchanger: Numerical modeling and experimental investigation, Appl. Therm. Eng. 135, 246–256. [CrossRef] [Google Scholar]
  • Heatric (2011) Compact diffusion-bonded heat exchangers – The future of heat transfer engineering, Heatric Division of Meggitt (UK) Limited, Dorset, UK. [Google Scholar]
  • Song H. (2007) Investigations of a printed circuit heat exchanger for supercritical CO2 and water, State University, Kansas. [Google Scholar]
  • Chai L., Tassou S.A. (2009) Numerical study of the thermo-hydraulic performance of printed circuit heat exchangers for supercritical CO2 Brayton cycle applications, Energy Procedia 161, 480–488. [Google Scholar]
  • Jeon S., Baik Y.J., Byon C. (2016) Thermal performance of heterogeneous PCHE for supercritical CO2 energy cycle, Int. J. Heat Mass Trans. 102, 867–876. [CrossRef] [Google Scholar]
  • Marchionni M., Chai L., Bianchi G. (2019) Numerical modelling and performance maps of a printed circuit heat exchanger for use as recuperator in supercritical CO2 power cycles, Energy Procedia 161, 472–479. [CrossRef] [Google Scholar]
  • Meshram A., Jaiswal A.K., Khivsara S.D., Ortega J.D., Ho C., Bapat R., Dutta P. (2016) Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications, Appl. Them. Sci. 109, 861–870. [Google Scholar]
  • Lee S.M., Kim K.Y. (2014) A parametric study of the thermal-hydraulic performance of a zigzag printed circuit heat exchanger, Heat Transf. Eng. 35, 13, 1192–1200. [CrossRef] [Google Scholar]
  • Zheng Z.Y., Fletcher D.F., Haynes B.S. (2014) Transient laminar heat transfer simulations in periodic zigzag channels, Int. J. Heat Mass Trans. 71, 758–768. [CrossRef] [Google Scholar]
  • Yang Y., Li H.Z., Yao M.Y., Gao W., Zhang Y.F., Zhang L. (2019) Investigation on the effects of narrowed channel cross-sections on the heat transfer performance of a wavy-channeled PCHE, Int. J. Heat Mass Trans. 135, 33–43. [CrossRef] [Google Scholar]
  • Nikitin K., Kato Y., Ngo L. (2006) Printed circuit heat exchanger thermal-hydraulic performance in supercritical CO2, experimental loop, Int. J. Refrig. 29, 5, 807–814. [CrossRef] [Google Scholar]
  • Ishizuka T., Kato Y., Muto Y., Nikitin K., Lam N.T. (2006) Thermal-hydraulic characteristics of a printed circuit heat exchanger in a supercritical CO2 loop, Nucl. React. Therm. Hydraul. 30, 109–116. [Google Scholar]
  • Baik S., Kim S.G., Lee J., Lee J.I. (2017) Study on CO2-water printed circuit heat exchanger performance operating under various CO2 phases for S-CO2 power cycle application, Appl. Therm. Eng. 113, 1536–1546. [CrossRef] [Google Scholar]
  • Bae S.J., Kwon J., Kim S.G., Son I.W., Lee J.I. (2019) Condensation heat transfer and multi-phase pressure drop of CO2 near the critical point in a printed circuit heat exchanger, Int. J. Heat Mass Trans. 129, 1206–1221. [CrossRef] [Google Scholar]
  • Hu H., Li J., Chen Y., Xie Y. (2021) Measurement and correlation for two-phase frictional pressure drop characteristics of flow boiling in printed circuit heat exchangers, Int. J. Refrig. 129, 69–77. [CrossRef] [Google Scholar]
  • Hu H., Li J., Xie Y., Chen Y. (2021) Experimental investigation on heat transfer characteristics of flow boiling in zigzag channels of printed circuit heat exchangers, Int. J. Heat Mass Trans. 165, 120712. [CrossRef] [Google Scholar]
  • Kim S.G., Lee Y., Ahn Y., Lee J.I. (2016) CFD aided approach to design printed circuit heat exchangers for supercritical CO2 Brayton cycle application, Ann. Nucl. Energy 92, 175–185. [CrossRef] [Google Scholar]
  • Zhao Z.C., Zhang X., Zhao K., Jiang P.P., Chen Y.P. (2017) Numerical investigation on heat transfer and flow characteristics of supercritical nitrogen in a straight channel of printed circuit heat exchanger, Appl. Therm. Eng. 126, 717–729. [CrossRef] [Google Scholar]
  • Kim I.H., No H.C., Lee J.I., Jeon B.G. (2009) Thermal hydraulic performance analysis of the printed circuit heat exchanger using a helium test facility and CFD simulations, Nucl. Eng. Des. 239, 2399–2408. [CrossRef] [Google Scholar]
  • Zhao Z.C., Zhao K., Jia D.D., Jiang P.P., Shen R.D. (2017) Numerical investigation on the flow and heat transfer characteristics of supercritical liquefied natural gas in an airfoil fin printed circuit heat exchanger, Energies 10, 11, 1828–1845. [CrossRef] [Google Scholar]
  • Zhao Z.C., Zhou Y.M., Ma X.L., Chen X.D., Li S.L., Yang S. (2019) Numerical study on thermal hydraulic performance of supercritical LNG in zigzag-type channel PCHEs, Energies 12, 3, 548–566. [CrossRef] [Google Scholar]
  • Zhao Z.C., Zhou Y.M., Ma X.L., Chen X.D., Li S.L., Yang S. (2019) Effect of different zigzag channel shapes of PCHEs on heat transfer performance of supercritical LNG, Energies 12, 11, 2085–2099. [CrossRef] [Google Scholar]
  • Zhang P., Ma T., Ke H.B., Wang W., Lin Y.S., Wang Q.W. (2019) Numerical investigation on local thermal characteristics of printed circuit heat exchanger for natural gas liquefication, Energy Procedia 158, 5408–5413. [CrossRef] [Google Scholar]
  • Yoon S.H., Shin J.H., Kim D.H., Choi J.S. (2017) Design of printed circuit heat exchanger (PCHE) for LNG re-gasification system, in: Proceeding of the ASME 2017 Int. Mech. Eng. Congr. Exp., Tampa, Florida, USA, November 3–9, 2017. [Google Scholar]
  • de la Torre R., François J., Lin C. (2021) Optimization and heat transfer correlations development of zigzag channel printed circuit heat exchangers with helium fluids at high temperature, Int. J. Therm. Sci. 160, 106645. [CrossRef] [Google Scholar]
  • Peng Z.R., Zheng Q.Y., Chen J., Yu S.C., Zhang X.R. (2020) Numerical investigation on heat transfer and pressure drop characteristics of coupling transcritical flow and two-phase flow in a printed circuit heat exchanger, Int. J. Heat Mass Trans. 153, 119557. [CrossRef] [Google Scholar]
  • Zhou Y.L., Yin D.D., Guo X.T. (2022) Numerical analysis of the thermal and hydraulic characteristics of CO2/propane mixtures in printed circuit heat exchangers, Int. J. Heat Mass Trans. 185, 122434. [CrossRef] [Google Scholar]
  • Kim Y.H., Seo J.E., Choi Y.J., Lee K.J. (2008) Heat transfer and pressure drop characteristics of straight channel of printed circuit heat exchangers, Trans. Korean Soc. Mech. Eng. B 32, 12, 915–923. [CrossRef] [Google Scholar]
  • Kwon O.K., Choi M.J., Choi Y.J. (2009) Heat transfer and pressure drop characteristics in zigzag channel angles of printed circuit heat exchangers, Korean J. Air-Cond. Refrig. Eng. 21, 9, 475–482. [Google Scholar]
  • Kim I.H., No H.C. (2013) Thermal-hydraulic physical models for a printed circuit heat exchanger covering He, He-CO2 mixture, and water fluids using experimental data and CFD, Exp. Therm. Fluid Sci. 48, 213–221. [CrossRef] [Google Scholar]
  • Chen M.H., Sun X.D., Christensen R.N., Skavdahl I., Utgikar V., Sabharwall P. (2016) Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger, Appl. Therm. Eng. 108, 1409–1417. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.