Numéro |
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
|
|
---|---|---|
Numéro d'article | 78 | |
Nombre de pages | 9 | |
DOI | https://doi.org/10.2516/stet/2024080 | |
Publié en ligne | 8 octobre 2024 |
- Zhou Z., Qiao H.W., Hou Y., Yang H.G., Yang S. (2021) Epitaxial halide perovskite-based materials for photoelectric energy conversion, Energy Environ. Sci. 14, 1, 127–157. [CrossRef] [Google Scholar]
- Wang Y., Guo H., Luo X., Liu X., Hu Z., Han L., Zhang Z. (2019) Nonsiliceous mesoporous materials: design and applications in energy conversion and storage, Small 15, 32, 1805277. [CrossRef] [Google Scholar]
- Jiang Y., Xie H., Han L., Zhang Y., Ding Y., Shen S., Chen B., Ni M. (2023) Advances in TiS2 for energy storage, electronic devices, and catalysis: a review, Prog. Nat. Sci. 33, 2, 133–150. [CrossRef] [Google Scholar]
- Jiang C., Moniz S.J.A., Wang A., Zhang T., Tang J. (2017) Photoelectrochemical devices for solar water splitting–materialand challenges, Chem. Soc. Rev. 46, 15, 4645–4660. [CrossRef] [PubMed] [Google Scholar]
- Li Z., Luo L., Li M., Chen W., Liu Y., Yang J., Xu S.-M., Zhou H., Ma L., Xu M., Kong X., Duan H. (2021) Photoelectrocatalytic C-H halogenation over an oxygen vacancy-rich TiO2 photoanode, Nat. Commun. 12, 1, 6698. [CrossRef] [Google Scholar]
- Gao B., Sun M., Ding W., Ding Z., Liu W. (2021) Decoration of γ-graphyne on TiO2 nanotube arrays: improved photoelectrochemical and photoelectrocatalytic properties, Appl. Catal. B-Environ. 281, 119492. [CrossRef] [Google Scholar]
- Liu Y., Wygant B.R., Kawashima K., Mabayoje O., Hong T.E., Lee S.E., Lin J., Kim J.H., Yubuta K., Li W., Li J., Mullins C.B. (2019) Facet effect on the photoelectrochemical performance of a WO3/BiVO4 heterojunction photoanode, Appl. Catal. B-Environ. 245, 227–239. [CrossRef] [Google Scholar]
- Sivula K., Formal F.L., Grätzel M. (2009) WO3–Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach, Chem. Mater. 21, 13, 2862–2867. [CrossRef] [Google Scholar]
- Li X., Kan M., Wang T., Qin Z., Zhang T., Qian X., Kuwahara Y., Mori K., Yamashita H., Zhao Y. (2021) The ClO generation and chlorate suppression in photoelectrochemical reactive chlorine species systems on BiVO4 photoanodes, Appl. Catal. B-Environ. 296, 120387. [CrossRef] [Google Scholar]
- Zheng S., Han L., Luo X., Sun L., Li N., Zhang Z., Li X. (2022) Polydopamine and nafion bi-layer passivation modified CdS photoanode for photoelectrochemical hydrogen evolution, Int. J. Energy Res. 46, 4, 4506–4515. [CrossRef] [Google Scholar]
- Song J., Su H.Y., Fang M., Han L., Chu J., Li C., Miao R., Yao W., Zhang G., You A. (2022) Photochemical construction of the ZnCdS/PO/FeCoNiPi–MnO composite for efficient tandem application of photocatalytic partial water splitting and overall water splitting, J. Mater. Chem. A 10, 30, 16029–16036. [CrossRef] [Google Scholar]
- Peng S., Jiang Y., Wang Z., Luo X., Lu J., Han L., Ding Y. (2020) Introducing a porous container and a defect-rich cocatalyst coating over CdS nanoparticles for promotion of photocatalytic hydrogen evolution, Catal. Lett. 150, 12, 3533–3541. [CrossRef] [Google Scholar]
- Zheng S., Peng S., Wang Z., Huang J., Luo X., Han L., Li X. (2021) Schottky-structured 0D/2D composites via electrostatic self-assembly for efficient photocatalytic hydrogen evolution, Ceram. Int. 47, 20, 28304–28311. [CrossRef] [Google Scholar]
- Chen S., Huang D., Xu P., Xue W., Lei L., Cheng M., Wang R., Liu X., Deng R. (2020) Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: will we stop with photocorrosion? J. Mater. Chem. A 8, 5, 2286–2322. [CrossRef] [Google Scholar]
- Shen S., Li X., Zhou Y., Han L., Xie Y., Deng F., Huang J., Chen Z., Feng Z., Xu J., Dong F. (2023) Novel BiOBr/Bi2S3 high-low junction prepared by molten salt method for boosting photocatalytic degradation and H2O2 production, J. Mater. Sci. Technol. 155, 148–159. [CrossRef] [Google Scholar]
- Zan Z., Li X., Gao X., Huang J., Luo Y., Han L. (2022) 0D/2D carbon nitride quantum dots (CNQDs)/BiOBr S-scheme heterojunction for robust photocatalytic degradation and H2O2 production, Acta Phys. Chim. Sin. 39, 6, 2209016. [CrossRef] [Google Scholar]
- Tang M., Li X., Deng F., Han L., Xie Y., Huang J., Chen Z., Feng Z., Zhou Y. (2023) BiPO4/Ov-BiOBr high-low junctions for efficient visible light photocatalytic performance for tetracycline degradation and H2O2 production, Catalysts 13, 3, 634. [CrossRef] [Google Scholar]
- Wang W., Li X., Deng F., Liu J., Gao X., Huang J., Xu J., Feng Z., Chen Z., Han L. (2022) Novel organic/inorganic PDI-Urea/BiOBr S-scheme heterojunction for improved photocatalytic antibiotic degradation and H2O2 production, Chin. Chem. Lett. 33, 12, 5200–5207. [CrossRef] [Google Scholar]
- Ge G., Liu M., Liu C., Zhou W., Wang D., Liu L., Ye J. (2019) Ultrathin FeOOH nanosheets as an efficient cocatalyst for photocatalytic water oxidation, J. Mater. Chem. A 7, 15, 9222–9229. [CrossRef] [Google Scholar]
- Wang T., Long X., Wei S., Wang P., Wang C., Jin J., Hu G. (2020) Boosting hole transfer in the fluorine-doped hematite photoanode by depositing ultrathin amorphous FeOOH/CoOOH cocatalysts, ACS Appl. Mater. Interfaces 12, 44, 49705–49712. [CrossRef] [PubMed] [Google Scholar]
- Li J., Li F., Jin J. (2021) Hole extraction and injection pathways constructed by the in situ growth of ultra-thin Fe-doped NiOOH Co-catalysts on a fluorine-doped α-Fe2O3 photoanode, J. Power Sources 482, 228957. [CrossRef] [Google Scholar]
- Ning X., Li J., Yang B., Zhen W., Li Z., Tian B., Lu G. (2017) Inhibition of photocorrosion of CdS via assembling with thin film TiO2 and removing formed oxygen by artificial gill for visible light overall water splitting, Appl. Catal. B-Environ. 212, 129–139. [CrossRef] [Google Scholar]
- Ning X., Zhen W., Wu Y., Lu G. (2018) Inhibition of CdS photocorrosion by Al2O3 shell for highly stable photocatalytic overall water splitting under visible light irradiation, Appl. Catal. B-Environ. 226, 373–383. [CrossRef] [Google Scholar]
- Wang C., Wang L., Jin J., Liu J., Li Y., Wu M., Chen L., Wang B., Yang X., Su B.L. (2016) Probing effective photocorrosion inhibition and highly improved photocatalytic hydrogen production on monodisperse PANI@CdS core-shell nanospheres, Appl. Catal. B-Environ. 188, 351–359. [CrossRef] [Google Scholar]
- Farokhi M., Mottaghitalab F., Saeb M.R., Thomas S. (2019) Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy, J. Control. Release 309, 203–219. [CrossRef] [Google Scholar]
- Kim Y., Coy E., Kim H., Mrówczyński R., Torruella P., Jeong D.W., Choi K.S., Jang J.H., Song M.Y., Jang D.J., Peiro F., Jurga S., Kim H.J. (2021) Efficient photocatalytic production of hydrogen by exploiting the polydopamine-semiconductor interface, Appl. Catal. B-Environ. 280, 119423. [CrossRef] [Google Scholar]
- Zhang B., Wang H., Xi J., Zhao F., Zeng B. (2020) In situ formation of inorganic/organic heterojunction photocatalyst of WO3/Au/polydopamine for immunoassay of human epididymal protein 4, Electrochim. Acta 331, 135350. [CrossRef] [Google Scholar]
- Guo Z., Wang G., Fu H., Wang P., Liao J., Wang A. (2020) Photocatalytic degradation of methylene blue by a cocatalytic PDA/TiO2 electrode produced by photoelectric polymerization, RSC Adv. 10, 44, 26133–26141. [CrossRef] [Google Scholar]
- Li N., Han L., Zhang H., Huang J., Luo X., Li X., Wang Y., Qian W., Yang Y. (2022) Polydopamine nanolayer assisted internal photo-deposition of CdS nanocrystals for stable cosensitized photoanode, Nano Res. 15, 10, 1–10. [CrossRef] [Google Scholar]
- Sun L., Han L., Li N., Wang P., Wang M., Luo X., Li X. (2022) P25-induced polydopamine conformal assembly on Cu2O polyhedra for hydrophilic and stable photoelectrochemical performance, J. Mater. Chem. C 10, 38, 14194–14201. [CrossRef] [Google Scholar]
- Li N., Zhang Q., Han L., Huang J., Luo X., Li X. (2023) Recent advances in polydopamine and its derivatives assisted electrocatalysis and photocatalysis, Int. J. Hydrogen Energy 48, 19, 7004–7018. [CrossRef] [Google Scholar]
- Ruan M., Guo D., Jia Q. (2021) A uniformly decorated and photostable polydopamine–organic semiconductor to boost the photoelectrochemical water splitting performance of CdS photoanodes, Dalton Trans. 50, 5, 1913–1922. [CrossRef] [PubMed] [Google Scholar]
- Yue J., Jiang X., Yu A. (2011) Experimental and theoretical study on the β-FeOOH nanorods: growth and conversion, J. Nanopart. Res. 13, 3961–3974. [CrossRef] [Google Scholar]
- Dreyer D.R., Miller D.J., Freeman B.H., Paul D.R., Bielawski C.W. (2012) Elucidating the structure of poly(dopamine), Langmuir 28, 15, 6428–6435. [CrossRef] [PubMed] [Google Scholar]
- Wang H., Wei L., Wang Z., Chen S. (2016) Preparation, characterization and long-term antibacterial activity of Ag-poly(dopamine)-TiO2 nanotube composites, RSC Adv. 6, 17, 14097–14104. [CrossRef] [Google Scholar]
- Ristić M., Musić S., Godec M. (2006) Properties of γ-FeOOH, α-FeOOH and α-Fe2O3 particles precipitated by hydrolysis of Fe3+ ions in perchlorate containing aqueous solutions, J. Alloys Compd. 417, 1, 292–299. [CrossRef] [Google Scholar]
- Guo F., Chen J., Zhao J., Chen Z., Xia D., Zhan Z., Wang Q. (2020) Z-scheme heterojunction g-C3N4@PDA/BiOBr with biomimetic polydopamine as electron transfer mediators for enhanced visible-light driven degradation of sulfamethoxazole, Chem. Eng. J. 386, 124014. [CrossRef] [Google Scholar]
- Chen F., Yu W., Qie Y., Zhao L., Zhang H., Guo L.H. (2019) Enhanced photocatalytic removal of hexavalent chromium through localized electrons in polydopamine-modified TiO2 under visible irradiation, Chem. Eng. J. 373, 58–67. [CrossRef] [Google Scholar]
- Perini J.A.L., Torquato L.D.M., Irikura K., Zanoni M.V.B. (2019) Ag/polydopamine-modified Ti/TiO2 nanotube arrays: a platform for enhanced CO2 photoelectroreduction to methanol, J. CO2 Util. 34, 596–605. [Google Scholar]
- Li M., Zhang S., Li L., Han J., Zhu X., Ge Q., Wang H. (2020) Construction of highly active and selective polydopamine modified hollow ZnO/Co3O4 p-n heterojunction catalyst for photocatalytic CO2 reduction, ACS Sustain. Chem. Eng. 8, 11465–11476. [CrossRef] [Google Scholar]
- Jie X., Bao N., Gong B., Zhou S. (2017) Facile synthesis of plasmonic Ag/AgCl/polydopamine-TiO2 fibers for efficient visible photocatalysis, Nano-Struct. 12, 98–105. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.