Numéro
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
Numéro d'article 49
Nombre de pages 13
DOI https://doi.org/10.2516/stet/2024044
Publié en ligne 13 août 2024
  • Ibáñez-Rioja A., Järvinen L., Puranen P., Kosonen A., Ruuskanen V., et al. (2023) Off-grid solar PV–wind power–battery–water electrolyzer plant: simultaneous optimization of component capacities and system control, Appl. Energy 345, 1, 121277. [CrossRef] [Google Scholar]
  • Su R., Gu Q., Wen T. (2014) Optimization of high-speed train control strategy for traction energy saving using an improved genetic algorithm, J. Appl. Math. 2014, 507308. [Google Scholar]
  • Zhang K., Huang W., Hou X., Xu J., Su R., Xu H. (2021) A fault diagnosis and visualization method for high-speed train based on edge and cloud collaboration, Appl. Sci. 11, 3, 1251. [CrossRef] [Google Scholar]
  • Shen Y., Gao Y., Hu Y., Yao X., Yu W., et al. (2023) Spatial and temporal distribution characteristics of solar energy resources in Tibet, Energy Eng. 121, 1, 43–57. [Google Scholar]
  • Kilic H. (2023) Distributed cooperative fault tolerant optimal active power control in AC microgrid, ISA Trans. 142, 98–111. [CrossRef] [Google Scholar]
  • Widjaja R., Asrol M., Agustono I., et al. (2023) State of charge estimation of lead acid battery using neural network for advanced renewable energy systems, Emerg. Sci. J. 7, 3. https://doi.org/10.28991/ESJ-2023-07-03-02. [Google Scholar]
  • Uddin M., Mo H., Dong D., Elsawah S., Zhu J., et al. (2023) Microgrids: a review, outstanding issues and future trends, Energy Strat. Rev. 49, 101127. [CrossRef] [Google Scholar]
  • Saeed M.H., Wang F., Kalwar B.A., Iqbal S. (2021) A review on microgrids’ challenges & perspectives, IEEE Access 9, 166502–166517. [CrossRef] [Google Scholar]
  • Wan L. (2018) Current situation and case analysis of intelligent distributed photovoltaic microgrid in plateau and cold region, Tibet Sci. Technol. 9, 16–20. (In Chinese). [Google Scholar]
  • Wang Y. (2018) Research review on intelligent distributed photovoltaic microgrid in plateau and cold region, Tibet Sci. Technol. 6, 22–30. (In Chinese). [Google Scholar]
  • Cao T. (2016) The optimization design of solar micro grid in the mountain areas of high altitude, North China Electric Power University, China. (M.S. Thesis). [Google Scholar]
  • Yang H. (2023) Research on power and energy storage capacity of constant output power “PV+Energy Storage” system in micro-grid, Sol. Energy 9, 30–37. (In Chinese). [Google Scholar]
  • Wu J. (2019) Design of DC microgrid control system, Magaz. Equip. Mach. 4, 12–16. (In Chinese). [Google Scholar]
  • Geng Y., Zhong Y., Li Q. (2017) Design of hardware circuit for bidirectional DC–DC controller in DC micro-grid energy storage system, Mar. Electr. Electron. Technol. 37, 7, 44–47. (In Chinese). [Google Scholar]
  • Guo F., Wang L., Zhang D., Xu Q. (2020) Distributed voltage restoration and current sharing control in islanded DC microgrid systems without continuous communication, IEEE Trans. Industr. Electron. 67, 4, 3043–3053. [CrossRef] [Google Scholar]
  • Eghtedarpour N., Farjah E. (2014) Power control and management in a hybrid AC/DC microgrid, IEEE Trans. Smart Grid 5, 3, 1494–1505. [CrossRef] [Google Scholar]
  • Pragya Thakur R. (2022) A review of architecture and control strategies of hybrid AC/DC microgrid, in: 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP), Hyderabad, India, pp. 1–5. [Google Scholar]
  • Xue S. (2016) Research on coordination control of a hybrid AC/DC microgrid, Southeast University, China. (M.S. Thesis). [Google Scholar]
  • Zhu Y., Tang Q., Jia L. (2017) New hybrid AC/DC microgrid topology and its reliability analysis, Electr. Power Constr. 38, 9, 81–87. (In Chinese). [Google Scholar]
  • Liu D. (2016) Research on operation control strategy of dual mode PV-storage microgrid system, Beijing Jiaotong University, China. (M.S. Thesis). [Google Scholar]
  • Balal A., Pakzad Y., Demir A., et al. (2023) Forecasting solar power generation utilizing machine learning models in Lubbock, Emerg. Sci. J. 7, 4. https://doi.org/10.28991/ESJ-2023-07-04-02. [Google Scholar]
  • Prasetyo D., Budiana P., Praowo R., Arifin Z. (2023) Modeling Finned thermal collector construction nanofluid-based Al2O3 to enhance photovoltaic performance, Civil Eng. J. 9, 12. https://doi.org/10.28991/CEJ-2023-09-12-03. [Google Scholar]
  • Xi Z. (2023) Research on bidirectional DC/DC parallel operation control strategy of DC microgrid, Lanzhou University of Technology, China. M.S. Thesis. [Google Scholar]
  • Lan Z. (2022) Research on control strategy of off-grid voltage source inverter. M.S. Thesis. Beijing Jiaotong University, China. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.