Numéro
Sci. Tech. Energ. Transition
Volume 78, 2023
Characterization and Modeling of the Subsurface in the Context of Ecological Transition
Numéro d'article 22
Nombre de pages 17
DOI https://doi.org/10.2516/stet/2023019
Publié en ligne 29 août 2023
  • Schneider F., Burrus J., Wolf S. (1993) Modelling overpressures by effectivestress/porosity relationships in low-permeability rocks: empirical artifice or physical reality, Norwegian Pet. Soc. Spec. Publ. 3, 333–341. [Google Scholar]
  • Carman P.C. (1937) Fluid flow through granular beds, Chem. Eng. Res. Des. 75, S32–S48. [Google Scholar]
  • Carman P.C. (1956) Flow of gases through porous media, Academic Press, New York. [Google Scholar]
  • Kozeny J. (1927) Über kapillare Leitung des Wassers im Boden, Sitzungsber Akad. Wiss., Wien 136, 2a, 271–306. [Google Scholar]
  • Doyen P.M. (1988) Permeability, conductivity, and pore geometry of sandstone, J. Geophys. Res. 93, B7, 7729. [CrossRef] [Google Scholar]
  • Yang Y., Aplin A.C. (2010) A permeability-porosity relationship for mudstones, Mar. Pet. Geol. 27, 8, 1692–1697. [CrossRef] [Google Scholar]
  • Guy N., Colombo D., Frey J., Cornu T., Cacas-Stentz M.C. (2019) Coupled modeling of sedimentary basin and geomechanics: a modified Drucker–Prager cap model to describe rock compaction in tectonic context, Rock Mech. Rock Eng. 52, 10, 3627–3643. [CrossRef] [Google Scholar]
  • Beall A., Fisher A. (1969) Sedimentology. Initial Reports Deep Sea Drilling Project, vol. 1, pp. 521–593. [Google Scholar]
  • Dunnington H.V. (1967) Aspects of diagenesis and shape change in stylolitic limestone reservoirs, in: 7th World Petroleum Congress (WPC). [Google Scholar]
  • Bloch S., McGowen J.H., Brizzolara D.W. (1990) Porosity prediction, prior to drilling, in sandstones of the Kekiktuk formation (Mississippian), North slope of Alaska, AAPG Bull. 74, 9, 1371–1385. [Google Scholar]
  • Faille I., Thibaut M., Cacas M.C., Havé P., Willien F., Wolf S., Agelas L., Pegaz-Fiornet S. (2014) Modeling fluid flow in faulted basins, Oil Gas Sci. Technol. 69, 4, 529–553. [CrossRef] [Google Scholar]
  • Fuchtbauer H. (1967) Influence of different types of diagenesis on sandstone porosity, in: 7th World Petroleum Congress (WPC). [Google Scholar]
  • Schmidt V., McDonald D.A. (1979) The role of secondary porosity in the course of sandstone diagenesis, SEPM Society for Sedimentary Geology. [CrossRef] [Google Scholar]
  • Dasgupta T., Mukherjee S. (2020) Compaction of sediments and different compaction models, Springer International Publishing, pp. 1–8. [Google Scholar]
  • Giles M.R., Indrelid S.L., James D.M.D. (1998) Compaction—the great unknown in basin modelling, Geol. Soc. Spec. Publ. 141, 1, 15–43. [CrossRef] [Google Scholar]
  • Marín-Moreno H., Minshull T.A., Edwards R.A. (2013) A disequilibrium compaction model constrained by seismic data and application to overpressure generation in the Eastern Black Sea basin, Basin Res. 25, 3, 331–347. [CrossRef] [Google Scholar]
  • Okiongbo K.S. (2011) Effective stress-porosity relationship above and within the oil window in the north sea basin, Res. J. Appl. Sci. Eng. Technol. 3, 1, 32–38. [Google Scholar]
  • Doligez B. (1987) Migration of hydrocarbons in sedimentary basins, in: 2nd IFP Exploration Research Conference. [Google Scholar]
  • Schneider F., Wolf S., Faille I., Pot D. (2000) A 3d basin model for hydrocarbon potential evaluation: application to Congo offshore, Oil Gas Sci. Technol. 55, 1, 3–13. [CrossRef] [Google Scholar]
  • Ungerer P., Burrus J., Doligez B., Chenet P.Y., Bessis F. (1990) Basin evaluation by integrated two-dimensional modeling of heat transfer, fluid flow, hydrocarbon generation, and migration, AAPG Bull. 74, 3,309–335. [Google Scholar]
  • Luo X., Vasseur G., Pouya A., Lamoureux-Var V., Poliakov A. (1998) Elastoplastic deformation of porous media applied to the modelling of compaction at basin scale, Mar. Pet. Geol. 15, 2, 145–162. [CrossRef] [Google Scholar]
  • Obradors-Prats J., Rouainia M., Aplin A.C., Crook A.J.L. (2017) Assessing the implications of tectonic compaction on pore pressure using a coupled geomechanical approach, Mar. Pet. Geol. 79, 31–43. [CrossRef] [Google Scholar]
  • Schneider F. (1993) Modèle de compaction élasto-plastique en simulation de bassins, Oil Gas Sci. Technol. 48, 1, 3–14. [Google Scholar]
  • Schneider F., Potdevin J.L., Wolf S., Faille I. (1994) Modèle de compaction élastoplastique et viscoplastique pour simulation de bassins sédimentaires, Oil Gas Sci. Technol. 49, 2, 1–8. [Google Scholar]
  • DiMaggio F.L., Sandler I.S. (1971) The effect of strain rate on the constitutive equation of rocks, 2801T, Defense Nuclear Agency. [Google Scholar]
  • Berthelon J., Brüch A., Colombo D., Frey J., Traby R., Bouziat A., Cacas-Stentz M.C., Cornu T. (2021) Impact of tectonic shortening on fluid overpressure in petroleum system modelling: insights from the Neuquén basin, argentina, Mar. Pet. Geol. 127, 104933. [CrossRef] [Google Scholar]
  • Brüch A., Colombo D., Frey J., Berthelon J., Cacas-Stentz M.-C., Cornu T. (2020) Poro-elastoplastic constitutive law for coupling 3d geomechanics to classical petroleum system modeling, in: 54th U.S. Rock Mechanics/Geomechanics Symposium. [Google Scholar]
  • Brüch A., Colombo D., Frey J., Berthelon J., Cacas-Stentz M.C., Cornu T., Gout C. (2021) Coupling 3d geomechanics to classical sedimentary basin modeling: From gravitational compaction to tectonics, Geomech. Energy Environ. 28, 100259. [CrossRef] [Google Scholar]
  • EDF R&D (2017) Code Aster. http://www.code-aster.org. [Google Scholar]
  • Guy N., Enchéry G., Renard G. (2012) Numerical modeling of thermal EOR: Comprehensive coupling of an AMR-based model of thermal fluid flow and geomechanics, Oil Gas Sci. Technol. 67, 6, 1019–1027. [CrossRef] [Google Scholar]
  • Bouziat A., Guy N., Frey J., Colombo D., Colin P., Cacas-Stentz M.-C., Cornu T. (2019) An assessment of stress states in passive margin sediments: Iterative hydro-mechanical simulations on basin models and implications for rock failure predictions, Geosci. J. 9, 11, 469. [CrossRef] [Google Scholar]
  • Lyakhovsky V., Shalev E., Panteleev I., Mubassarova V. (2020) Directional compaction, Earth Space Sci. https://doi.org/10.1002/essoar.10504323.1. [Google Scholar]
  • Brüch A., Maghous S., Ribeiro F.L.B., Dormieux L. (2018) A thermo-poromechanical constitutive and numerical model for deformation in sedimentary basins, J. Pet. Sci. Eng. 160, 313–326. [CrossRef] [Google Scholar]
  • Biot M.A. (1941) General theory of three-dimensional consolidation, J. Appl. Phys. 12, 2, 155–164. [Google Scholar]
  • Biot M.A., Willis D.G. (1957) The elastic coefficients of the theory of consolidation, J. Appl. Mech. 24, 4, 594–601. [CrossRef] [MathSciNet] [Google Scholar]
  • Coussy O. (2004) Poromechanics, Wiley. [Google Scholar]
  • Terzaghi K. (1923) Die Berechnung der Durchlassigkeitsziffer des Tones aus dem Verlauf der Hidrodynamichen Spannungserscheinungen, Sitzungsberichte der Akademie der Wissenschaften in Wien 132, 125–138. [Google Scholar]
  • Boutéca M., Sarda J.-P., Laurent J. (1991) Rock mechanics contribution to the determination of fluid flow properties, in: Second European Core Analysis Symposium (Eurocas II). [Google Scholar]
  • Maghous S., Brüch A., Bernaud D., Dormieux L., Braun A.L. (2014) Two-dimensional finite element analysis of gravitational and lateral-driven deformation in sedimentary basins, Int. J. Numer. Anal. Methods Geomech. 38, 7, 725–746. [CrossRef] [Google Scholar]
  • Schneider F., Potdevin J.L., Wolf S., Faille I. (1996) Mechanical and chemical compaction model for sedimentary basin simulators, Tectonophysics 263, 1–4, 307–317. [CrossRef] [Google Scholar]
  • Schneider F., Hay S. (2001) Compaction model for quartzose sandstones – application to the Garn Formation, Haltenbanken, Mid-Norwegian continental shelf – part I – theory, European Association of Geoscientists & Engineers. [Google Scholar]
  • Athy L.F. (1930) Density, porosity, and compaction of sedimentary rocks, AAPG Bull. 14, 1, 1–24. [Google Scholar]
  • Gutierrez M., Wangen M. (2005) Modeling of compaction and overpressuring in sedimentary basins, Mar. Pet. Geol. 22, 3, 351–363. [CrossRef] [Google Scholar]
  • Fowler A.C., Yang X.-S. (1998) Fast and slow compaction in sedimentary basins, SIAM J. Appl. Math 59, 1, 365–385. [Google Scholar]
  • Zienkiewicz O.C., Taylor R.L., Zhu J.Z. (2005) The finite element method: its basis and fundamentals, Elsevier Butterworth-Heinemann. [Google Scholar]
  • Dormieux L., Maghous S. (1999) Poroelasticity and poroplasticity at large strains, Oil Gas Sci. Technol. 54, 6, 773–784. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.