Open Access
Table 5
Comparative analysis between ANN and ANFIS.
Sr. No. | Feature | ANN | ANFIS |
---|---|---|---|
1. | Accuracy | 92–95% | 97–99% |
2. | Fault classification | Requires extensive training data | Efficient even with moderate training data |
3. | Fault detection speed | Moderate due to complex training weights | Faster due to hybrid learning approach |
4. | Adaptability | High for nonlinear systems but lacks interpretability | High with rule-based flexibility |
5. | Model interpretability | Low (black-box approach) | High (explainable with fuzzy rules) |
6. | Training time | Longer for large datasets | Relatively faster |
7. | Robustness to noise | Sensitive to noise in training data | Less sensitive due to fuzzy logic handling |
8. | Fault location precision | Accurate but slightly less consistent | Higher precision and consistency |
9. | Ease of implementation | Easier to implement in neural network frameworks | Requires defining fuzzy rules and membership functions |
10. | Generalization | Good with diverse training data | Very good due to hybrid learning |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.