Open Access
Table 1
Previous literature summary dealing with the forecasting of transportation-based energy and carbon emissions.
Reference | Region | Sector | Model | Dataset scale | Input | Output | Evaluation metrics |
---|---|---|---|---|---|---|---|
[32] | China | Transportation | PSO+GM | 1990–2017 | Historical CO2 emissions | CO2 | APE and MAPE |
[33] | China | Transportation | MFO-ELM, PSO-ELM, CSO-SVM, PSO-SVM, PSO-BPNN, ELM, SVM, BPNN, and LSTM | 2000–2017 | 13 different inputs | CO2 | MAE, MAPE, RMSE, and SMAPE |
[34] | Thailand | Transportation | Log-linear regression, path analysis, time series, and curve estimation | 1989–2011 | Population, GDP, and registered vehicles | CO2 | MAPE |
[35] | Different countries | Transportation | OLS, SVM, and GBR | 1960–2020 | Historical CO2 emissions | CO2 | R 2, MAE, rRMSE, and MAPE |
[10] | Türkiye | Transportation | ANN, DL, SVM, and curve estimation | 1970–2016 | GDP, population, vehicle kilometers, and year | CO2 and energy demand | R 2, RMSE, MAPE, MBE, rRMSE, and MABE |
[36] | Iranian | All sectors | ARIMA and GM | 1965–2010 | Historical CO2 emissions | CO2 | RMSE, MAE, and MAPE |
[37] | China | Cement industry | Hybrid GM | 2018–2030 | Historical CO2 emissions | CO2 | MAPE, RMSE, MAE |
[38] | China | Industrial, building, transport, and agricultural sectors | CKC, and LMDI | 1998–2015 | Energy resources and GDP | CO2 | R 2 |
[39] | China and India | Transportation, Building, Waste, and Manufacturing/Construction | DGM | 2009–2017 | Historical CO2 emissions | CO2 | MAPE, NMAPE, and RMSE |
[40] | India | All sectors | EO, MPA, LSA, SOS, and BSA | 1980–2018 | Energy and economic indexes | All GHG emissions | R 2, MBE, rRMSE, and MAPE |
[41] | China, the United States, and India | – | ARIMA, BPNN, and MNGM | 1990–2018 | Historical CO2 emissions | CO2 | MAPE, MSE, and MSPE |
[42] | India | Agricultural | SARIMAX, SVR, and H-W | 1961–2018 | Historical CO2 emissions | CO2 | MAPE, and MSE |
[15] | Türkiye | Energy | DL, SVM, and ANN | 1990–2018 | Electricity production-based inputs | All GHG emissions | MBE, RMSE, rRMSE, R 2, and MAPE |
[43] | Türkiye | Energy | ARIMA | 1970–2015 | Energy production-based inputs | CO2 | – |
[44] | Türkiye | Energy | Empirical model | 2001–2008 | Electricity production-based inputs | CO2 | r |
[45] | Taiwan | Transportation | GM | 1990–2006 | Motor vehicle numbers | Energy consumption, and CO2 | E |
[46] | Türkiye | All sectors | GM | 1999–2009 | Historical CO2 emissions | CO2 | E |
[27] | Türkiye | Transportation | ABC | 1970–2013 | GDP, vehicle number, population, | Energy demand | R 2, MAE, RMS, and AE |
[47] | Türkiye | Tourism | Empirical models | 1960–2014 | Tourist arrivals, energy consumption, and economic growth | CO2 | E |
[48] | Türkiye | All sectors | GWO-ANN | 1990–2011 | GDP, renewable energy production, energy consumption, population, and urbanization rate | GHG | RE, RMSE, MAE, U-statistic, R, and NSE |
[49] | China | Transportation | SVR | 1973–2017 | GDP, energy intensity, energy consumption, population, urbanization rate, and proportion of the secondary industry | CO2 | MSE |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.