Numéro |
Sci. Tech. Energ. Transition
Volume 80, 2025
Innovative Strategies and Technologies for Sustainable Renewable Energy and Low-Carbon Development
|
|
---|---|---|
Numéro d'article | 42 | |
Nombre de pages | 15 | |
DOI | https://doi.org/10.2516/stet/2025023 | |
Publié en ligne | 9 juin 2025 |
Regular Article
Energy optimization through morphing blade design under structural constraints: a case study on the NREL 1.5 MW wind turbine
Department of Aerospace Engineering, Amirkabir University of Technology (Tehran Polytechnic), No. 350, Hafez Street, Valiasr Square, Tehran 15875-4413, Iran
* Corresponding author: ajahan@aut.ac.ir
Received:
4
December
2024
Accepted:
6
May
2025
This study explores a novel morphing blade design methodology to enhance the aerodynamic performance of the NREL 1.5 MW wind turbine while addressing structural constraints. The proposed approach applies targeted morphing to the leading and trailing edges of the blade sections, utilizing a streamlined parameterization framework with four shape variables per airfoil: two deflection angles and two deformation starting points. The morphing process is modeled using an m-degree shape function and optimized through a Genetic Algorithm (GA) to maximize power generation while minimizing structural displacement and thrust forces. Turbine performance is initially assessed using Blade Element Momentum (BEM) theory and validated through high-fidelity Computational Fluid Dynamics (CFD) simulations based on the Reynolds-Averaged Navier–Stokes (RANS) equations and the k-ω turbulence model. Results demonstrate significant power coefficient improvements of up to 23.8%, 10%, and 7% at wind speeds of 11.5 m/s, 8 m/s, and 4 m/s, respectively, compared to the baseline configuration. These findings underline the potential of morphing blade technologies to enhance energy efficiency in wind turbines while adhering to practical structural limitations.
Key words: Horizontal-axis wind turbine / Morphing blade / Computational Fluid Dynamics (CFD) / Genetic algorithm optimization / Power coefficient / Structural constraints
© The Author(s), published by EDP Sciences, 2025
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.
