Issue
Sci. Tech. Energ. Transition
Volume 80, 2025
Innovative Strategies and Technologies for Sustainable Renewable Energy and Low-Carbon Development
Article Number 42
Number of page(s) 15
DOI https://doi.org/10.2516/stet/2025023
Published online 09 June 2025
  • Farina A, Anctil A (2022) Material consumption and environmental impact of wind turbines in the USA and globally, Resour. Conserv. Recycl. 176, 9, 1–13. [Google Scholar]
  • Alagbada SA (2016) 100 MW wind turbine power plant, in: Nahhas AM, Ibhadode AO (eds), Renewable energy: recent advances, IntechOpen, London, UK, pp. 1–17. [Google Scholar]
  • Chehouri A, Younes R, Ilinca A, Perron J (2015) Review of performance optimization techniques applied to wind turbines, Applied Energy 142, 1, 361–388. [CrossRef] [Google Scholar]
  • Rehman S, Alam MM, Alhems LM, Rafique MM (2018) Horizontal axis wind turbine blade design methodologies for efficiency enhancement: a review, Energies 11, 3, 1–34. [Google Scholar]
  • Dimino I, Lecce L, Pecora R (2017) Morphing wing technologies: large commercial aircraft and civil helicopters, in: Ameduri S (ed), Morphing wing technologies, Butterworth-Heinemann, Italy, pp. 491–515. [Google Scholar]
  • Aubrun S, Leroy A, Devinant P (2017) A review of wind turbine-oriented active flow control strategies, Exp. Fluids 58, 10, 1–21. [CrossRef] [Google Scholar]
  • Manerikar SS, Damkale SR, Havaldar SN, Kulkarni SV, Keskar YA (2021) Horizontal axis wind turbines passive flow control methods: a review, IOP Conf. Ser. Mater. Sci. Eng. 1136, 012022. [CrossRef] [Google Scholar]
  • Pechlivanoglou G (2012) Passive and active flow control solutions for wind turbine blades, PhD Thesis, Technical University of Berlin, Berlin, 236 p. [Google Scholar]
  • Bai X, Zhan H, Mi B (2023) A new flow control and efficiency enhancement method for horizontal axis wind turbines based on segmented prepositive elliptical wings, Aerospace 10, 9, 1–22. [Google Scholar]
  • Bizon N, Tabatabaei NM, Blaabjerg F, Kurt E (2017) Energy harvesting and energy efficiency: technology, methods, and applications, Springer Nature, Switzerland. [CrossRef] [Google Scholar]
  • Schaffarczyk AP (2014) Introduction to wind turbine aerodynamics. Green energy and technology, in: Schaffarczyk AP (ed.), Understanding Wind Power Technology: Theory, Deployment and Optimisation, Springer, Berlin, pp. 1–29. [Google Scholar]
  • Muiruri PI, Motsamai OS (2017) Fatigue loads mitigation on horizontal axis wind turbines using aerodynamic devices: a survey, J. Eng. Sci. Technol. Rev. 10, 5, 144–152. [CrossRef] [Google Scholar]
  • Lachenal X, Daynes S, Weaver PM (2013) Review of morphing concepts and materials for wind turbine blade applications, Wind Energy 16, 2, 283–307. [CrossRef] [Google Scholar]
  • Ferede E, Gandhi F (2018) Load alleviation on wind turbines using camber morphing blade tip, in: Wind Energy Symposium, Kissimmee, Florida, 8–12 January, American Institute of Aeronautics and Astronautics, pp. 1–15. [Google Scholar]
  • Bartholomay S, Wester TT, Perez-Becker S, Konze S, Menzel C, Hölling M, Spickenheuer A, Peinke J, Nayeri CN, Paschereit OP, Oberleithner K (2021) Pressure-based lift estimation and its application to feedforward load control employing trailing-edge flaps, Wind Energy Sci. 6, 1, 221–245. [CrossRef] [Google Scholar]
  • Castillo AD, Jauregui-Correa JC, Herbert F, Castillo-Villar K, Franco JA, Hernandez-Escobedo Q, Perea-Moreno AJ, Alcayde A (2021) The effect of a flexible blade for load alleviation in wind turbines, Energies 14, 16, 1–14. [Google Scholar]
  • Nemati M, Jahangirian A (2020) Robust aerodynamic morphing shape optimization for high-lift missions, Aerosp. Sci Technol. 10, 3, 1–10. [Google Scholar]
  • Magrini A, Benini E, Ponza R, Wang C, Khodaparast HH, Friswell MI, Landersheim V, Laveuve D, Contell Asins C (2019) Comparison of constrained parameterisation strategies for aerodynamic optimisation of morphing leading edge airfoil, Aerospace 6, 3, 1–14. [Google Scholar]
  • Zhang Z, De Gaspari A, Ricci S, Song C, Yang C (2021) Gradient-based aerodynamic optimization of an airfoil with morphing leading and trailing edges, Appl. Sci. 11, 4, 1–25. [Google Scholar]
  • Butbul J, Macphee D, Beyene A (2015) The impact of inertial forces on morphing wind turbine blade in vertical axis configuration, Energy Convers. Manage. 91, 1, 54–62. [CrossRef] [Google Scholar]
  • Tan J (2017) Simulation of morphing blades for vertical axis wind turbines, Master thesis, Concordia University, 108 p. [Google Scholar]
  • Baghdadi M, Elkoush S, Akle B, Elkhoury M (2020) Dynamic shape optimization of a vertical-axis wind turbine via blade morphing technique, Renew. Energy 154, 3, 239–251. [CrossRef] [Google Scholar]
  • Alejandro Franco J, Carlos Jauregui J, Carbajal A, Toledano-Ayala M (2017) Shape morphing mechanism for improving wind turbines performance, J. Energy Resour. Technol. 139, 5, 1–13. [CrossRef] [Google Scholar]
  • Wang W, Caro S, Bennis F, Salinas Mejia OR (2014) A simplified morphing blade for horizontal axis wind turbines, J. Sol. Energy Eng. 136, 1, 1–8. [Google Scholar]
  • Jia L, Hao J, Hall J, Nejadkhaki HK, Wang G, Yan Y, Sun MA (2021) A reinforcement learning based blade twist angle distribution searching method for optimizing wind turbine energy power, Energy 215, 1, 1–12. [Google Scholar]
  • Nejadkhaki HK, Sohrabi A, Purandare TP, Battaglia F, Hall JF (2021) A variable twist blade for horizontal axis wind turbines: modeling and analysis, Energy Convers. Manage. 248, 9, 1–13. [Google Scholar]
  • Ali AR, Akhter MZ, Omar FK (2021) Performance enhancement of a small-scale wind turbine featuring morphed trailing edge, Sustain. Energy Technol. Assess. 46, 4, 1–12. [Google Scholar]
  • Akhter MZ, Ali AR, Jawahar HK, Omar FK, Elnajjar E (2023) Performance enhancement of small-scale wind turbine featuring morphing blades, Energy 278, 5, 1–20. [Google Scholar]
  • Najafian A, Jahangirian A (2023) Optimum design of morphing flaps for improving horizontal axis wind turbine performance, Energy Sci. Eng. 11, 7, 2431–2443. [CrossRef] [Google Scholar]
  • Mehdi RA, Ostachowicz W, Luczak M (2016) MARE-WINT: new materials and reliability in offshore wind turbine technology, Springer Nature, Switzerland. [Google Scholar]
  • Rinker J, Dykes K (2018) WindPACT reference wind turbines, National Renewable Energy Laboratory (NREL), 31 p. [Google Scholar]
  • Letcher TM (2017) Wind energy engineering: a handbook for onshore and offshore wind turbines, Joe Hayton, United Kingdom. [Google Scholar]
  • Sørensen JD, Sørensen JN (2011) Wind energy systems: optimising design and construction for safe and reliable operation, Woodhead, Oxford, UK. [Google Scholar]
  • Schepers JG, van Wingerden MP, van Kuik GEJ, Ockels RLA. 2002. Final report of IEA Annex XVIII: enhanced field rotor aerodynamics database, Energy Research Center of the Netherlands, ECN-C-02-016, February. [Google Scholar]
  • Abbott Ira H, Von Doenhoff AE (1959) Theory of wing sections, including a summary of airfoil data, McGraw-Hill Book Company, New York. [MathSciNet] [Google Scholar]
  • Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32, 8, 1598–1605. [CrossRef] [Google Scholar]
  • Wang L, Quant R, Kolios A (2016) Fluid structure interaction modelling of horizontal-axis wind Turbine blades based on CFD and FEA, J. Wind Eng. Ind. Aerodyn. 158, 11, 11–25. [CrossRef] [Google Scholar]
  • Haupt RL, Haupt SE (2004) Practical genetic algorithms, John Wiley & Sons, New Jersey. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.