Numéro |
Sci. Tech. Energ. Transition
Volume 78, 2023
Power Components For Electric Vehicles
|
|
---|---|---|
Numéro d'article | 41 | |
Nombre de pages | 10 | |
DOI | https://doi.org/10.2516/stet/2023037 | |
Publié en ligne | 22 décembre 2023 |
Regular Article
Multi-material topology optimization of a flux switching machine
1
Université Paris-Saclay, ENS Paris-Saclay, CNRS, SATIE, 4, Avenue des Sciences, 91190 Gif-sur-Yvette, France
2
CY Cergy Paris Université, CNRS, SATIE, site de de Neuville, 5 mail Gay Lussac, 95031 Neuville sur Oise, France
3
CNAM, LMSSC, Case 2D6R10, 2 rue Conté, 75003 Paris, France
4
Université Paris Saclay, ENS Paris Saclay, CentraleSupélec, CNRS, LMPS, 91190 Gif-sur-Yvette, France
5
ENS Rennes, CNRS, SATIE, Campus de Ker Lann, 11 Av. Robert Schuman, 35170 Bruz, France
* Corresponding author: theodore.cherriere@ens-paris-saclay.fr
Received:
14
September
2023
Accepted:
8
November
2023
This paper investigates the topology optimization of the rotor of a 3-phase flux-switching machine with 12 permanent magnets located within the stator. The objective is to find the steel distribution within the rotor that maximizes the average torque for a given stator, permanent magnets, and electrical currents. The optimization algorithm relies on a density method based on gradient descent. The adjoint variable method is used to compute the sensitivities efficiently. Since the rotor topology depends on the current feedings, this approach is tested on several electrical periods and returns alternative topologies. Then, the method is extended to the multi-material case and applied to optimize the non-magnet part of the stator. When dealing with 3 phases, the algorithm returns the reference topology as well as a theoretical machine with no return conductor according to the set current angle. To illustrate the creativity of the method, the optimization is finally performed with a single-phase and returns a new topology.
Key words: Density method / Flux switching machine / Multi-material topology optimization / Nonlinear magnetostatics
© The Author(s), published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.
