Issue
Sci. Tech. Energ. Transition
Volume 80, 2025
Innovative Strategies and Technologies for Sustainable Renewable Energy and Low-Carbon Development
Article Number 45
Number of page(s) 11
DOI https://doi.org/10.2516/stet/2025019
Published online 11 July 2025
  • Ishaq H., Dincer I. (2021) Comparative assessment of renewable energy-based hydrogen production methods, Renew. Sustain. Energy Rev. 135, 110192. [Google Scholar]
  • Huang J., Lu D., Huang X., Hu Z., Liu L., Lin C., Jing R., Xie C., Brandon N., Zheng X., Zhao Y. (2024) Is China ready for a hydrogen economy? Feasibility analysis of hydrogen energy in the Chinese transportation sector, Renew. Energy 223, 119964. [Google Scholar]
  • Ma H., Zhong Y., Wang J., Xie Y., Ding R., Kang R., Zeng Y. (2024) Method for identifying the leakage of buried natural gas pipeline by soil vibration signals, J. Nat Gas Sci.Eng 132, 205487. [Google Scholar]
  • Tu R., Liu C., Shao Q., Liao Q., Qiu R., Liang Y. (2024) Pipeline sharing: optimal design of downstream green ammonia supply systems integrating with multi-product pipelines, Renew. Energy 223, 120024. [Google Scholar]
  • Yang F., Wang T., Deng X., Dang J., Huang Z., Hu S., Li Y., Ouyang M. (2021) Review on hydrogen safety issues: incident statistics, hydrogen diffusion, and detonation process, Int. J. Hydrogen Energy 46, 31467–31488. [Google Scholar]
  • Fúnez Guerra C., Reyes-Bozo L., Vyhmeister E., Jaén Caparrós M., Salazar J.L., Clemente-Jul C. (2020) Technical-economic analysis for a green ammonia production plant in Chile and its subsequent transport to Japan, Renew. Energy 157, 404–414. [Google Scholar]
  • Ma H., Wang S., Wang J., Xie Y., Zhong P., Cai W., Min K., Luo X. (2023) Investigation on strength and fracture mechanism of aluminum plate-fin structures at cryogenic temperature, Eng. Fail. Anal, 152, 107512. [Google Scholar]
  • Ma H.,Ding R., He B., Liu Q., Xu G., Qian S., Fu H. (2023) Numerical investigation of the strain characteristics of a natural gas transportation pipeline crossing tunnel, Transport. Res. Rec. 2677, 51–61. [Google Scholar]
  • Carlson E.L., Pickford K., Nyga-Łukaszewska H. (2023) Green hydrogen and an evolving concept of energy security: challenges and comparisons, Renew. Energy 219, 119410. [Google Scholar]
  • Hafsi Z., Elaoud S., Mishra M. (2019) A computational modelling of natural gas flow in looped network: effect of upstream hydrogen injection on the structural integrity of gas pipelines, J. Nat. Gas Sci. Eng. 64, 107–117. [Google Scholar]
  • Kostowski W.J., Skorek J. (2012) Real gas flow simulation in damaged distribution pipelines, Energy 45, 481–488. [Google Scholar]
  • Yan Y., Dong X., Li J. (2015) Experimental study of methane diffusion in soil for an underground gas pipe leak, J. Nat. Gas Sci. Eng. 27, 82–89. [Google Scholar]
  • Yuan F., Zeng Y., Luo R., Khoo B.C. (2020) Numerical and experimental study on the generation and propagation of negative wave in high-pressure gas pipeline leakage, J. Loss Prev. Process Ind. 65, 104129. [Google Scholar]
  • Montiel H., Vilchez J., Casal J., Arnaldos J. (1998) Mathematical modelling of accidental gas releases, J. Hazard. Mater. 59, 211–233. [Google Scholar]
  • Wang D.W., Huo C.Y., Gao H.L. (2008) Simplified calculation method of gas leakage rate of long-distance pipeline, Nat. Gas Ind. 1, 116–118+174–175. [Google Scholar]
  • Arnaldos J., Casal J., Montiel H., Sánchez-Carricondo M., Vílchez J.A. (1998) Design of a computer tool for the evaluation of the consequences of accidental natural gas releases in distribution pipes, J. Loss Prev. Process Ind. 11, 135–148. [Google Scholar]
  • Hou Z., Yuan X. (2021) Leakage locating and sampling optimization of small-rate leakage on medium-and-low-pressure unground natural gas pipelines, J. Nat. Gas Sci. Eng. 94, 104112. [Google Scholar]
  • He G., Liang Y., Li Y., Wu M., Sun L., Xie C., Li F. (2017) A method for simulating the entire leaking process and calculating the liquid leakage volume of a damaged pressurized pipeline, J. Hazard. Mater. 332, 19–32. [Google Scholar]
  • Jo Y. (2003) A simple model for the release rate of hazardous gas from a hole on high-pressure pipelines, J. Hazard. Mater. 97, 31–46. [Google Scholar]
  • Moloudi R., Abolfazli Esfahani J. (2014) Modeling of gas release following pipeline rupture: Proposing non-dimensional correlation, J. Loss Prev. Process Ind. 32, 207–217. [Google Scholar]
  • Hou Q., Yang D., Li X., Xiao G., Ho S.C.M. (2020) Modified leakage rate calculation models of natural gas pipelines, Math. Probl. Eng. 2020, 1–10. [Google Scholar]
  • Nagase Y., Sugiyama Y., Kubota S., Saburi T., Matsuo A. (2019) Prediction model of the flow properties inside a tube during hydrogen leakage, J. Loss Prev. Process Ind. 62, 103955. [Google Scholar]
  • Wang L., Chen J., Ma T., Ma R., Bao Y., Fan Z. (2024) Numerical study of leakage characteristics of hydrogen-blended natural gas in buried pipelines, Int. J. Hydrogen Energy 49, 1166–1179. [Google Scholar]
  • Liang J. (2019) Research on leakage amount estimation and diffusion characteristics for buried gas pipeline, PhD thesis, China University of Petroleum (East China). [Google Scholar]
  • Yuan F., Zeng Y., Khoo B.C. (2022) A new real-gas model to characterize and predict gas leakage for high-pressure gas pipeline, J. Loss Prev. Process Ind. 74, 104650. [Google Scholar]
  • Zhou X., Li K., Tu R., Yi J., Xie Q., Jiang X. (2016) A modelling study of the multiphase leakage flow from pressurised CO2 pipeline, J. Hazard. Mater. 306, 286–294. [Google Scholar]
  • Ebrahimi-Moghadam A., Farzaneh-Gord M., Deymi-Dashtebayaz M. (2016) Correlations for estimating natural gas leakage from above-ground and buried urban distribution pipelines, J. Nat. Gas Sci. Eng. 34, 185–196. [Google Scholar]
  • Uilhoorn F.E. (2013) A comparison between PSRK and GERG-2004 equation of state for simulation of non-isothermal compressible natural gases mixed with hydrogen in pipelines, Arch. Min. Sci. 58, 579–590. [Google Scholar]
  • Zhu J., Pan J., Zhang Y., Li Y., Li H., Feng H., Chen D., Kou Y., Yang R. (2023) Leakage and diffusion behavior of a buried pipeline of hydrogen-blended natural gas, Int. J. Hydrogen Energy 48, 11592–11610. [Google Scholar]
  • Zhou C., Yang Z., Chen G., Zhang Q., Yang Y. (2022) Study on leakage and explosion consequence for hydrogen blended natural gas in urban distribution networks, Int. J. Hydrogen Energy 47, 27096–27115. [Google Scholar]
  • Ebrahimi-Moghadam A., Farzaneh-Gord M., Arabkoohsar A., Moghadam A.J. (2018) CFD analysis of natural gas emission from damaged pipelines: Correlation development for leakage estimation, J. Clean. Prod. 199, 257–271. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.