Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 80, 2025
|
|
---|---|---|
Article Number | 46 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.2516/stet/2025026 | |
Published online | 29 July 2025 |
- Schacht U, Jenkins C (2014) Soil gas monitoring of the Otway Project demonstration site in SE Victoria, Australia, Int. J. Greenh Gas Control 24, 14–29. https://doi.org/10.1016/j.ijggc.2014.02.007. [Google Scholar]
- Shin WJ, Ryu JS, Choi HB, Yun ST, Lee KS (2020) Monitoring the movement of artificially injected CO2 at a shallow experimental site in Korea using carbon isotopes, J. Environ. Manage. 258, 110030. https://doi.org/10.1016/j.jenvman.2019.110030. [Google Scholar]
- Beaubien S, Ruggiero L, Annunziatellis A, Bigi S, Ciotoli G, Deiana P, Graziani S, Lombardi S, Tartarello Maria C (2014) The importance of baseline surveys of near-surface gas geochemistry for CCS monitoring, as shown from onshore case studies in Northern and Southern Europe, Oil Gas Sci. Technol. 70, 4, 615–633. https://doi.org/10.2516/ogst/2014009. [Google Scholar]
- Gold H (2023) Ramsay 2 Update., in Very high hydrogen concentrations up to 86% purity found along with the very high helium concentrations Australian stock exchange. Available at https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02755706-2A1495322. [Google Scholar]
- Prinzhofer A, Tahara Cissé CS, Diallo AB (2018) Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali), Int. J. Hydrogen Energy 43, 42, 19315–19326. https://doi.org/10.1016/j.ijhydene.2018.08.193. [CrossRef] [Google Scholar]
- Prinzhofer A, Rigollet C, Lefeuvre N, Françolin J, Valadão de Miranda PE (2024) Maricá (Brazil), the new natural hydrogen play which changes the paradigm of hydrogen exploration, Int. J. Hydrogen Energy 62, 91–98. https://doi.org/10.1016/j.ijhydene.2024.02.263. [Google Scholar]
- Frery E, Langhi L, Maison M, Moretti I (2021) Natural hydrogen seeps identified in the North Perth Basin, Western Australia, Int. J. Hydrogen Energy 46, 61, 31158–31173. https://doi.org/10.1016/j.ijhydene.2021.07.023. [Google Scholar]
- Mainson M., Heath C., Pejcic B., Frery E. (2022) Sensing hydrogen seeps in the subsurface for natural hydrogen exploration, Appl. Sci. 12, 13, 6383. https://doi.org/10.3390/app12136383. [CrossRef] [Google Scholar]
- Roche V., Geymond U., Boka-Mene M., Delcourt N., Portier E., Revillon S., Moretti I. (2024) A new continental hydrogen play in Damara Belt (Namibia), Sci. Rep. 14, 1, 11655. https://doi.org/10.1038/s41598-024-62538-6. [CrossRef] [Google Scholar]
- Aimar L, Frery E, Strand J, Heath C, Khan S, Moretti I, Ong C (2023) Natural hydrogen seeps or salt lakes: how to make a difference? Grass Patch example, Western Australia, Front. Earth Sci. 11, 14. https://doi.org/10.3389/feart.2023.1236673. [CrossRef] [Google Scholar]
- Carman CH, Locke Ii R.A., Blakley C.S. (2014) Update on soil CO2 flux monitoring at the Illinois Basin–Decatur Project, USA. Energy Procedia 63, 3869–3880. https://doi.org/10.1016/j.egypro.2014.11.417. [Google Scholar]
- Prinzhofer A, Moretti I, Francolin J, Pacheco C, D’Agostino A, Werly J, Rupin F (2019) Natural hydrogen continuous emission from sedimentary basins: the example of a Brazilian H2-emitting structure, Int. J. Hydrogen Energy 44, 5676–5685. https://doi.org/10.1016/j.ijhydene.2019.01.119. [Google Scholar]
- Moretti I, Prinzhofer A, Françolin J, Pacheco C, Rosanne M, Rupin F, Mertens J (2021) Long-term monitoring of natural hydrogen superficial emissions in a brazilian cratonic environment. Sporadic large pulses versus daily periodic emissions, Int. J. Hydrogen Energy 46, 5, 3615–3628. https://doi.org/10.1016/j.ijhydene.2020.11.026. [Google Scholar]
- Larin N, Zgonnik V, Rodina S, Deville E, Prinzhofer A, Larin VN (2015) Natural molecular hydrogen seepage associated with surficial, rounded depressions on the European Craton in Russia. Nat. Resour. Res. 24, 3, 369–383. https://doi.org/10.1007/s11053-014-9257-5. [CrossRef] [Google Scholar]
- Zgonnik V, Beaumont V, Deville E, Larin N, Pillot D, Farrell KM (2015) Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA). Prog. Earth Planet. Sci. 2, 1, 31. https://doi.org/10.1186/s40645-015-0062-5. [CrossRef] [Google Scholar]
- Davies K., Frery E., Giwelli A., Esteban L., Keshavarz A., Iglauer S. (2024) A natural hydrogen seep in Western Australia: observed characteristics and controls, Sci. Tech. Energ. Transition 79, 48. https://doi.org/10.2516/stet/2024043. [Google Scholar]
- Lévy D., Roche V., Pasquet G., Combaudon V., Geymond U., Loiseau K., Moretti I. (2023) Natural H2 exploration: tools and workflows to characterize a play, Sci. Tech. Energ. Transition 78, 27. https://doi.org/10.2516/stet/2023021. [CrossRef] [Google Scholar]
- Davies K, Esteban L, Keshavarz A, Iglaeur S (2024) Advancing natural hydrogen exploration: headspace gas analysis in water-logged environments, Energy Fuels 38, 2010–2017. https://doi.org/10.1021/acs.energyfuels.3c04562. [Google Scholar]
- Halas P, Dupuy A, Franceschi M, Bordmann V, Fleury J-M, Duclerc D (2021) Hydrogen gas in circular depressions in South Gironde, France: Flux, stock, or artefact? Appl. Geochem. 127, 104928. https://doi.org/10.1016/j.apgeochem.2021.104928. [CrossRef] [Google Scholar]
- Schloemer S, Furche M, Dumke I, Poggenburg J, Bahr A, Seeger C, Vidal A, Faber E (2013) A review of continuous soil gas monitoring related to CCS – Technical advances and lessons learned, Appl. Geochem. 30, 148–160. https://doi.org/10.1016/j.apgeochem.2012.08.002. [Google Scholar]
- Olierook HKH, Timms NE, Wellmann JF, Corbel S, Wilkes PG (2015) 3D structural and stratigraphic model of the Perth Basin, Western Australia: Implications for sub-basin evolution, Aust. J. Earth Sci. 62, 4, 447–467. https://doi.org/10.1080/08120099.2015.1054882. [Google Scholar]
- Norvick MS (2003) Tectonic and stratigraphic history of the Perth Basin, Geoscience Australia, Canberra. [Google Scholar]
- Markwitz V, Kirkland CL, Evans NJ (2017) Early Cambrian metamorphic zircon in the northern Pinjarra Orogen: implications for the structure of the West Australian Craton margin, Lithosphere 9, 3–13. https://doi.org/10.1130/L569.1. [Google Scholar]
- Hartnady MIH, Kirkand CL, Smithies RH, Poujol M, Clark C (2019) Periodic Paleoproterozoic calc-alkaline magmatism at the south eastern margin of the Yilgarn Craton; implications for Nuna configuration, Precambrian Res. 332, 105400. https://doi.org/10.1016/j.precamres.2019.105400. [Google Scholar]
- Wang L, Jin Z, Chen X, Su Y, Huang X (2023) The origin and occurrence of natural hydrogen, Energies 16, 2400. https://doi.org/10.3390/en16052400. [Google Scholar]
- Boreham CJ, Edwards DS, Czado K, Rollet N, Wang L, van der Wielen S, Champion D, Blewett R, Feitz A, Henson PA (2021) Hydrogen in Australian natural gas: occurrences, sources and resources, APPEA J. 61, 1, 163–191. https://doi.org/10.1071/AJ20044. [CrossRef] [Google Scholar]
- Stalker L, Whittaker S (2017) South West Hub CCS project: evolution of storage site characterization through targeted research and its impact on uncertainty reduction, Energy Procedia 114, 5981–5993. https://doi.org/10.1016/j.egypro.2017.03.1733. [Google Scholar]
- Byrne C (2016) Seismic interpretation of the Harvey Area, O.R. Consultants, WAPIMS. . 78 p. Available at https://wapims.dmp.wa.gov.au/WAPIMS/Search/WellDetails?id=W005822#. [Google Scholar]
- Thomas C. (2018) Regional seismic interpretation and structure of the southern Perth Basin, Western Australia (Report 184), Geological Survey of Western Australia: DEMIRs eBookshop. Available at https://dmpbookshop.eruditetechnologies.com.au/product/regional-seismic-interpretation-and-structure-of-the-southern-perth-basin.do. [Google Scholar]
- Air-Met Scientific Pty Ltd (2012) GA5000 portable gas analyser. Landfill & contaminated land specification sheet. Geotech, Warwickshire, UK. Available at https://www.airmet.com.au/assets/documents/product/301/GA5000-Datasheet.pdf. [Google Scholar]
- Industrial Scientific (2021) Gas detection and monitoring solutions iBrid MX6 product specifications, in summary spec sheet, I. Available at https://fs.hubspotusercontent00.net/hubfs/4113657/_ISC2021/Supporting%20Documents/MXiBRID/MX6iBrid_SpecSheet_EN.pdf. [Google Scholar]
- Garcia-Anton E, Cuezva S, Fernandez-Cortes A, Benavente D, Sanchez-Moral S (2014) Main drivers of diffusive and advective processes of CO2-gas exchange between a shallow vadose zone and the atmosphere, Int. J. Greenhouse Gas Control 21, 113–129. https://doi.org/10.1016/j.ijggc.2013.12.006. [Google Scholar]
- Axiom Sensing (2024) Axiom sensing services. Available at https://www.axiomsensing.com/services-4. [Google Scholar]
- Korotcenkov G, Han SD, Stetter JR (2009) Review of electrochemical hydrogen sensors, Chem. Rev. 109, 3, 1402–1433. https://doi.org/10.1021/cr800339k. [Google Scholar]
- Wang C, Yang J, Li J, Luo C, Xu X, Qian F (2023) Solid-state electrochemical hydrogen sensors: a review, Int. J. Hydrogen Energy 48, 80, 31377–31391. https://doi.org/10.1016/j.ijhydene.2023.04.167. [Google Scholar]
- Bureau of Meteorology, Australia Government (2022) Bunbury, Western Australia May 2022 daily weather observations. Available at http://www.bom.gov.au/climate/dwo/IDCJDW6017.latest.shtml. [Google Scholar]
- Moretti I, Geymond U, Pasquet G, Aimar L, Rabaute A (2022) Natural hydrogen emanations in Namibia: Field acquisition and vegetation indexes from multispectral satellite image analysis, Int. J. Hydrogen Energy 47, 84, 35588–35607. https://doi.org/10.1016/j.ijhydene.2022.08.135. [Google Scholar]
- Hutchinson IP, Jackson O, Stocks AE, Barnicoat AC, Lawrence SR (2024) Greenstones as a source of hydrogen in cratonic sedimentary basins, in: Kilhams B, Holford S, Gardiner D, Gozzard S, Layfield L, McLean C, Thackrey S, Watson D (eds), The impacts of igneous systems on sedimentary basins and their energy resources, vol. 547, Geological Society of London, pp. 511–525. https://doi.org/10.1144/sp547-2023-39. [Google Scholar]
- Murray J, Clément A, Fritz B, Schmittbuhl J, Bordmann V, Fleury JM (2020) Abiotic hydrogen generation from biotite-rich granite: a case study of the Soultz-sous-Forêts geothermal site, France, Appl. Geochem. 119, 104631. https://doi.org/10.1016/j.apgeochem.2020.104631. [Google Scholar]
- Howard DM, Howard PJA (1993) Relationships between CO2 evolution, moisture content and temperature for a range of soil types, Soil Biol. Biochem. 25, 11, 1537–1546. https://doi.org/10.1016/0038-0717(93)90008-Y. [Google Scholar]
- Zeng Y, Su Z, Wan L, Wen J (2011) A simulation analysis of the advective effect on evaporation using a two-phase heat and mass flow model, Water Resour. Res. 47, 10, W10529. https://doi.org/10.1029/2011WR010701. [Google Scholar]
- Cheng Q, Zhang M, Jin H, Ren Y (2022) Spatiotemporal variation characteristics of hourly soil temperature in different layers in the low-latitude plateau of China, Front. Environ. Sci. 10, 1091985. https://doi.org/10.3389/fenvs.2022.1091985. [CrossRef] [Google Scholar]
- Massman WJ, Frank JM (2022) Modeling gas flow velocities in soils induced by variations in surface pressure, heat, and moisture dynamics, J. Adv. Model. Earth Syst. 14, 10, e2022MS003086. https://doi.org/10.1029/2022MS003086. [CrossRef] [Google Scholar]
- Fairbairn L, Rezanezhad F, Gharasoo M, Parsons CT, Macrae ML, Slowinski S, Van Cappellen P (2023) Relationship between soil CO2 fluxes and soil moisture: anaerobic sources explain fluxes at high water content, Geoderma 434, 116493. https://doi.org/10.1016/j.geoderma.2023.116493. [Google Scholar]
- Currie JA (1983) Gas diffusion through soil crumbs: the effects of wetting and swelling, Eur. J. Soil Sci. 34, 217–232. [Google Scholar]
- Laemmel T, Mohr M, Schack-Kirchner H, Schindler D, Maier M (2019) 1D air pressure fluctuations cannot fully explain the natural pressure‐pumping effect on soil gas transport, Soil Sci. Soc. Am. J. 83, 1044–1053. https://doi.org/10.2136/sssaj2018.09.0379. [Google Scholar]
- Laemmel T, Mohr M, Longdoz B, Schack-Kirchner H, Lang F, Schindler D, Maier M (2019) From above the forest into the soil – how wind affects soil gas transport through air pressure fluctuations, Agric. For. Meteorol. 265, 424–434. https://doi.org/10.1016/j.agrformet.2018.11.007. [CrossRef] [Google Scholar]
- Cathles L, Prinzhofer A (2020) What pulsating H2 emissions suggest about the H2 resource in the Sao Francisco Basin of Brazil, Geosciences 10, 149. https://doi.org/10.3390/geosciences10040149. [CrossRef] [Google Scholar]
- Lodge GM, Murphy SR (2006) Root depth of native and sown perennial grass-based pastures, North-West Slopes, New South Wales. 1. Estimates from cores and effects of grazing treatments, Aust. J. Exp. Agric. 46, 3, 337–345. https://doi.org/10.1071/EA04276. [Google Scholar]
- McMahon CJ, Roberts JJ, Johnson G, Edlmann K, Flude S, Shipton ZK (2023) Natural hydrogen seeps as analogues to inform monitoring of engineered geological hydrogen storage, in: Miocic JM, Heinemann N, Alcalde J, Edlmann K, Schultz RA (eds), Enabling secure subsurface storage in future energy systems, vol. 528, Geological Society of London, pp. 461–489. https://doi.org/10.1144/sp528-2022-59. [Google Scholar]
- Lacroix E, Lafortune S, de Donato P, Gombert P, Pokryszka Z, Adelise F, Caumon MC, Barrès O, Rupasinghe SKLS (2020) Development of monitoring tools in soil and aquifer for underground H2 storages and assessment of environmental impacts through an in-situ leakage simulation, in: 22nd EGU General Assembly, Online, 4–8 May, EGU2020-17949, https://doi.org/10.5194/egusphere-egu2020-17949. [Google Scholar]
- Jafari Raad SM, Leonenko Y, Hassanzadeh H (2022) Hydrogen storage in saline aquifers: opportunities and challenges, Renew. Sustain. Energy Rev. 168, 112846. https://doi.org/10.1016/j.rser.2022.112846. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.