Issue
Sci. Tech. Energ. Transition
Volume 77, 2022
Dossier LES4ECE’21: LES for Energy Conversion in Electric and Combustion Engines, 2021
Article Number 17
Number of page(s) 16
DOI https://doi.org/10.2516/stet/2022015
Published online 05 September 2022
  • Medina M., Fatouraie M., Wooldridge M. (2018) High-speed imaging studies of gasoline fuel sprays at fuel injection pressures from 300 to 1500 bar, in: WCX World Congress Experience, SAE Technical Paper 2018-01-0294. https://doi.org/10.4271/2018-01-0294. [Google Scholar]
  • Koch D., Berger V., Bittel A., Gschwandtner M., Wachtmeister G., Chiodi M., Kaechele A., Bargende M., Wichelhaus D. (2019) Investigation of an innovative combustion process for high-performance engines and its impact on emissions, in: International Powertrains, Fuels & Lubricants Meeting, SAE Technical Paper 2019-01-0039. https://doi.org/10.4271/2019-01-0039. [Google Scholar]
  • Attard W., Bassett M., Parsons P., Blaxill B. (2011) A new combustion system achieving high drive cycle fuel economy improvements in a modern vehicle powertrain, in: SAE 2011 World Congress & Exhibition, SAE Technical Paper 2011-01-0664. https://doi.org/10.4271/2011-01-0664. [Google Scholar]
  • Kim C., Perry K., Viola M., Li W., Kushal N. (2011) Three-way catalyst design for urealess passive ammonia SCR: Lean-burn SIDI aftertreatment system, in: SAE 2011 World Congress & Exhibition, SAE Technical Paper 2011–01-0306. https://doi.org/10.4271/2011-01-0306. [Google Scholar]
  • Li S., Sarlioglu B., Jurkovic S., Patel N., Savagian P. (2016) Analysis of temperature effects on performance of interior permanent magnet machines, in: 2016 IEEE Energy Conversion Congress and Exposition (ECCE), September 18–22, Milwaukee Convention Center, Milwaukee, WI, USA, pp. 1–8. https://doi.org/10.1109/ECCE.2016.7855214. [Google Scholar]
  • Waclawczyk T., Koronowicz T. (2006) Modeling of the wave breaking with CICSAM and HRIC High-resolution scheme, ECCOMAS CFD, Egmond aan Zee, The Netherlands. [Google Scholar]
  • Wallscheid O., Huber T., Peters W., Böcker J. (2014) Real-time capable methods to determine the magnet temperature of permanent magnet synchronous motors – A review, in: IECON 2014 – 40th Annual Conference of the IEEE Industrial Electronics Society, 29 October – 01 November 2014, Dallas, TX, USA, pp. 811–818. https://doi.org/10.1109/IECON.2014.7048594. [CrossRef] [Google Scholar]
  • Srinivasan C., Yang X., Schlautman J., Wang D., Srihari G. (2020) Conjugate heat transfer CFD analysis of an oil cooled automotive electrical motor, SAE Int. J. Adv. Curr. Pract. Mobil. 2, 4, 1741–1753. https://doi.org/10.4271/2020-01-0168. [Google Scholar]
  • Wilcox D.C. (1988) Turbulence modeling for CFD, 2nd edn., DCW Industries, Inc.. [Google Scholar]
  • Richards K.J., Senecal P.K., Pomraning E. (2017) CONVERGE 2.4 Manual, Convergent Science Inc., Madison, WI. [Google Scholar]
  • Senecal P.K., Pomraning E., Richards K.J., Briggs T.E., Choi C.Y., McDavid R.M., Patterson M.A., Hou S., Shethaji T. (2007) A new parallel cut-cell Cartesian CFD Code for rapid grid generation applied to in-cylinder diesel engine simulations, in: SAE World Congress & Exhibition, SAE Technical Paper #2007-01-0159. [Google Scholar]
  • Pomraning E., Richards K., Senecal P. (2014) Modeling turbulent combustion using a RANS model, detailed chemistry, and adaptive mesh refinement, in: SAE 2014 World Congress & Exhibition, SAE Technical Paper 2014-01-1116. [Google Scholar]
  • Waclawczyk T., Koronowicz T. (2006) Modeling of the wave breaking with CICSAM and HRIC high-resolution scheme, ECCOMAS CFD, Egmond aan Zee, The Netherlands. [Google Scholar]
  • Rhie C.M., Chow W.L. (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA J. 21, 1525–1532. [CrossRef] [Google Scholar]
  • Menter F.R. (1994) Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J 32, 8, 269–289. [Google Scholar]
  • Lilly D.K. (1992) A proposed modification of the Germano Subgrid-Scale closure method, Phys. Fluids A 4, 3, 633–635. https://doi.org/10.1063/1.858280. [CrossRef] [Google Scholar]
  • Madabhushi R., Leong M., Arienti M., Brown C., McDonell V. (2006) On the breakup regime map of liquid jet in crossflow, in: 19th Annual Conference on Liquid Atomization and Spray Systems, May 2006, 24–26 May, 2006, Toronto, CA. [Google Scholar]
  • Beck C., Schorr J., Echtle H., Verhagen J., Jooss A., Kruger C., Bargende M. (2021) Numerical and experimental investigation of flow phenomena in rotating step-holes for direct-spray-cooled electric motors, Int. J. Engine Res. 22, 5, 1731–1740. https://doi.org/10.1177/1468087420918046. [CrossRef] [Google Scholar]
  • Zhou Y., Williams R.J., Ramaprabhu P., Groom M., Thornber B., Hillier A., Mostert W., Rollin B., Balachandar S., Powell P.D., Mahalov A., Attal N. (2021) Rayleigh–Taylor and Richtmyer–Meshkov instabilities: a journey through scales, Phys. D Nonlinear Phenom 423, 132838. [CrossRef] [Google Scholar]
  • Sharp D.H. (1984) An overview of Rayleigh–Taylor instability, Phys. D: Nonlinear Phenom. 12, 1–3, 3–10. [CrossRef] [Google Scholar]
  • Zhou Y. (2017) Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing II, Phys. Rep. 723, 1–160. [MathSciNet] [Google Scholar]
  • Zhou Y. (2017) Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing I, Phys. Rep. 720, 1–136. [MathSciNet] [Google Scholar]
  • Beck C. (2020) Numerische Analyse der Zweiphasenströmung und Kühlwirkung in nasslaufenden Elektromotoren, Springer Fachmedien Wiesbaden GmbH. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.