Issue
Sci. Tech. Energ. Transition
Volume 80, 2025
Innovative Strategies and Technologies for Sustainable Renewable Energy and Low-Carbon Development
Article Number 32
Number of page(s) 19
DOI https://doi.org/10.2516/stet/2025012
Published online 01 April 2025
  • Prakash O., Ahmad A., Kumar A., Chatterjee R., Sharma S., Alayi R., Monfared H. (2022) The compressive study of energy security prospects in India through solar power, Int. J. Low-Carbon Technol. 17, 962–979. [Google Scholar]
  • Saurabh S., Kumar R. (2024) Optimizing PV integration: addressing energy fluctuations through BIPV and rooftop PV synergy, Sci. Technol. Energy Transit. 79, 6. [Google Scholar]
  • De Wild-Scholten M.J. (2013) Energy payback time and carbon footprint of commercial photovoltaic systems, Sol. Energy Mater. Sol. Cells 119, 296–305. [Google Scholar]
  • Bhandari K.P., Collier J.M., Ellingson R.J., Apul D.S. (2015) Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: a systematic review and meta-analysis, Renew. Sustain. Energy Rev. 47, 133–141. [Google Scholar]
  • Chambile E. (2024) Assessment of grid electricity systems using the life-cycle carbon-emission model, Sci. Technol. Energy Transit. 79, 73. [Google Scholar]
  • Sherwani A.F., Usmani J.A., Varun (2010)Life cycle assessment of solar PV based electricity generation systems: a review, Renew. Sustain. Energy Rev. 14, 540–544. [CrossRef] [Google Scholar]
  • Liang J., Li T., Zhang R., Dong L. (2023) Reactive voltage control strategy of distribution network considering the reliability of photovoltaic power supply, Sci. Technol. Energy Transit. 78, 34. [CrossRef] [Google Scholar]
  • Toosi H.A., Balador Z., Gjerde M., Vakili-Ardebili A. (2018) A life cycle cost analysis and environmental assessment on the photovoltaic system in buildings: two case studies in Iran, J. Clean Energy Technol. 6, 134–138. [Google Scholar]
  • Rethnam O.R., Palaniappan S., Ashokkumar V. (2020) Life cycle cost analysis of 1MW power generation using roof-top solar PV panels, Built Environ. Proj. Asset Manag. 10, 124–139. [Google Scholar]
  • Ali M.Y., Hassan M., Rahman M.A., Kafy A.A., Ara I., Javed A., Rahman M.R. (2019) Life cycle energy and cost analysis of small scale biogas plant and solar PV system in rural areas of Bangladesh, Energy Procedia 160, 277–284. [Google Scholar]
  • Kim H., Cha K., Fthenakis V.M., Sinha P., Hur T. (2014) Life cycle assessment of cadmium telluride photovoltaic (CdTe PV) systems, Sol. Energy 103, 78–88. [Google Scholar]
  • Kannan R., Leong K.C., Osman R., Ho H.K., Tso C.P. (2006) Life cycle assessment study of solar PV systems: An example of a 2.7 kWp distributed solar PV system in Singapore, Sol. Energy 80, 555–563. [Google Scholar]
  • Fu Y., Liu X., Yuan Z. (2015) Life-cycle assessment of multi-crystalline photovoltaic (PV) systems in China, J. Clean. Prod. 86, 180–190. [Google Scholar]
  • Baharwani V., Meena N., Dubey A., Brighu U., Mathur J. (2014) Life cycle analysis of solar PV system: a review, Int. J. Environ. Res. Dev. 4, 183–190. [Google Scholar]
  • Shahsavari A., Akbari M. (2018) Potential of solar energy in developing countries for reducing energy-related emissions, Renew. Sustain. Energy Rev. 90, 275–291. [Google Scholar]
  • Adam A.D., Apaydin G. (2016) Grid connected solar photovoltaic system as a tool for green house gas emission reduction in Turkey, Renew. Sustain. Energy Rev. 53, 1086–1091. [Google Scholar]
  • Breyer C., Koskinen O., Blechinger P. (2015) Profitable climate change mitigation: the case of greenhouse gas emission reduction benefits enabled by solar photovoltaic systems, Renew. Sustain. Energy Rev. 49, 610–628. [Google Scholar]
  • Solangi K.H., Islam M.R., Saidur R., Rahim N.A., Fayaz H. (2011) A review on global solar energy policy, Renew. Sustain. Energy Rev. 15, 2149–2163. [Google Scholar]
  • Battisti R., Corrado A. (2005) Evaluation of technical improvements of photovoltaic systems through life cycle assessment methodology, Energy 30, 952–967. [Google Scholar]
  • Kim H., Park H. (2018) PV waste management at the crossroads of circular economy and energy transition: the case of South Korea, Sustainability 10, 3565. [Google Scholar]
  • Ghisellini P., Passaro R., Ulgiati S. (2023) Environmental and social life cycle assessment of waste electrical and electronic equipment management in italy according to EU directives, Environments 10, 106. [Google Scholar]
  • Kim B., Azzaro-Pantel C., Pietrzak-David M., Maussion P. (2019) Life cycle assessment for a solar energy system based on reuse components for developing countries, J. Clean. Prod. 208, 1459–1468. [Google Scholar]
  • Paiano A. (2015) Photovoltaic waste assessment in Italy, Renew. Sustain. Energy Rev. 41, 99–112. [Google Scholar]
  • Santos J.D., Alonso-García M.C. (2018) Projection of the photovoltaic waste in Spain until 2050, J. Clean. Prod. 196, 1613–1628. [Google Scholar]
  • Domínguez A., Geyer R. (2017) Photovoltaic waste assessment in Mexico, Resour. Conserv. Recycl. 127, 29–41. [Google Scholar]
  • Sariatli F. (2017) Linear economy versus circular economy: a comparative and analyzer study for optimization of economy for sustainability, Visegr. J. Bioeconomy Sustain. Dev. 6, 31–34. [Google Scholar]
  • Gautam A., Shankar R., Vrat P. (2021) End-of-life solar photovoltaic e-waste assessment in India: a step towards a circular economy, Sustain. Prod. Consum. 26, 65–77. [Google Scholar]
  • Zhai P., Williams E.D. (2010) Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems, Environ. Sci. Technol. 44, 7950–7955. [Google Scholar]
  • Ranganath N., Sarkar D. (2021) Life cycle costing analysis of solar photo voltaic generation system in Indian scenario, Int. J. Sustain. Eng. 14, 1698–1713. [Google Scholar]
  • Walker A., Desai J.D., Qusaibaty A. (2020) Life-cycle cost and optimization of PV systems based on power duration curve with variable performance ratio and availability (NREL/TP-5C00-73850), National Renewable Energy Laboratory, Golden, CO. Available at https://www.nrel.gov/docs/fy20osti/73850.pdf. [Google Scholar]
  • Ludin N.A., Asia Pacific Economic Cooperation (APEC) (2019) Life cycle assessment of photovoltaic systems in the APEC region APEC Energy Working Group. Available at www.apec.org. [Google Scholar]
  • Webb D., Kneifel J., O’Fallon C. (2020) Developing cost functions for estimating solar photovoltaic system installed and life cycle costs using historical quote data, Technical Note (NIST TN), National Institute of Standards and Technology, Gaithersburg, MD. [Google Scholar]
  • Navarro-Galera A., Ortúzar-Maturana R.I., Muñoz-Leiva F. (2011) The application of life cycle costing in evaluating military investments: an empirical study at an international scale, Def. Peace Econ. 22, 509–543. [Google Scholar]
  • Pattanaik S.S., Sahoo A.K., Panda R., Behera S. (2024) Life cycle assessment and forecasting for 30 kW solar power plant using machine learning algorithms, e-Prime – Adv. Electr. Eng. Electron. Energy 7, 100476. [Google Scholar]
  • Lu L., Yang H.X. (2010) Environmental payback time analysis of a roof-mounted building-integrated photovoltaic (BIPV) system in Hong Kong, Appl. Energy 87, 3625–3631. [Google Scholar]
  • Peng J., Lu L., Yang H. (2013) Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems, Renew. Sustain. Energy Rev. 19, 255–274. [Google Scholar]
  • Yang D., Liu J., Yang J., Ding N. (2015) Life-cycle assessment of China’s multi-crystalline silicon photovoltaic modules considering international trade, J. Clean. Prod. 94, 35–45. [Google Scholar]
  • Herceg S., Fischer M., Weiß K.A., Schebek L. (2022) Life cycle assessment of PV module repowering, Energy Strateg. Rev. 43, 100928. [Google Scholar]
  • Fthenakis V.M., Kim H.C. (2013) Life cycle assessment of high-concentration photovoltaic systems, Prog. Photovoltaics Res. Appl. 21, 379–388. [Google Scholar]
  • Prabhu V.S., Shrivastava S., Mukhopadhyay K. (2022) Life cycle assessment of solar photovoltaic in india: a circular economy approach, Circ. Econ. Sustain. 2, 507–534. [Google Scholar]
  • Portillo F., Alcayde A., Garcia R.M., Fernandez-Ros M., Gazquez J.A., Novas N. (2024) Life cycle assessment in renewable energy: solar and wind perspectives, Environments 11, 7, 147. [Google Scholar]
  • Patil R.B., Kothavale B.S., Waghmode L.Y., Pecht M. (2021) Life cycle cost analysis of a computerized numerical control machine tool: a case study from Indian manufacturing industry, J. Qual. Maint. Eng. 27, 107–128. [Google Scholar]
  • Biswas A., Husain D., Prakash R. (2021) Life-cycle ecological footprint assessment of grid-connected rooftop solar PV system, Int. J. Sustain. Eng. 14, 529–538. [Google Scholar]
  • Wang R., Hasanefendic S., Von Hauff E., Bossink B. (2023) A system dynamics approach to technological learning impact for the cost estimation of solar photovoltaics, Energies 16, 8005. [Google Scholar]
  • Anctil A., Fthenakis V. (2012) Life cycle assessment of organic photovoltaics, Third Gener. Photovolt 16, 91–110. [Google Scholar]
  • Roy A., Kulkarni G.N. (2019) Optimization of cleaning periodicity of solar photo-voltaic power, in: International Conference on Applied Energy 2019, Västerås, Sweden, August 12–15. [Google Scholar]
  • Fthenakis V.M. (2004) Life cycle impact analysis of cadmium in CdTe PV production, Renew. Sust. Energ. 8, 303–334. [Google Scholar]
  • Frischknecht R., Heath G., Raugei M., Sinha P., de Wild-Scholten M. (2020) Methodology guidelines on life cycle assessment of photovoltaic (Report IEA-PVPS T12-18: 2020) [CrossRef] [Google Scholar]
  • Heath G.A., Silverman T.J., Kempe M., Deceglie M., Ravikumar D., Remo T., Cui H., Sinha P., Libby C., Shaw S., Komoto K. (2020) Research and development priorities for silicon photovoltaic module recycling to support a circular economy, Nat. Energy 5, 502–510. [CrossRef] [Google Scholar]
  • Markert E., Celik I., Apul D. (2020) Private and externality costs and benefits of recycling crystalline silicon (c-Si) photovoltaic panels, Energies 13, 3650. [Google Scholar]
  • Sica D., Malandrino O., Supino S., Testa M., Lucchetti M.C. (2018) Management of end-of-life photovoltaic panels as a step towards a circular economy, Renew. Sustain. Energy Rev. 82, 2934–2945. [CrossRef] [Google Scholar]
  • Fthenakis V.M. (2000) End-of-life management and recycling of PV modules, Energy Policy 28, 1051–1058. [Google Scholar]
  • Jungbluth N. (2005) Life cycle assessment of crystalline photovoltaics in the Swiss ecoinvent database, Prog. Photovoltaics Res. Appl. 13, 429–446. [Google Scholar]
  • García-Valverde R., Miguel C., Martínez-Béjar R., Urbina A. (2009) Life cycle assessment study of a 4.2 kWp stand-alone photovoltaic system, Sol. Energy 83, 1434–1445. [Google Scholar]
  • Stylos N., Koroneos C. (2014) Carbon footprint of polycrystalline photovoltaic systems, J. Clean. Prod. 64, 639–645. [Google Scholar]
  • Kolbeck-Urlacher H. (2022) Decommissioning solar energy systems resource guide 10. Available at https://www.cfra.org/sites/default/files/publications/Decommissioning%20solar%20energy%20systems%20WEB.pdf. [Google Scholar]
  • Reidy R., Davis M., Coony R., Gould S., Mann C., Sewak B. (2005) Guidelines for life cycle cost analysis. Available at https://sustainable.stanford.edu/sites/g/files/sbiybj26701/files/media/file/guidelines_for_life_cycle_cost_analysis.pdf. [Google Scholar]
  • Walker H., Lockhart E., Desai J., Ardani K., Klise G., Lavrova O., Tansy T., Deot J., Fox B., Pochiraju A. (2020) Model of operation-and-maintenance costs for photovoltaic systems, National Renewable Energy Laboratory (NREL), Golden, CO. Available at https://www.nrel.gov/docs/fy20osti/74840.pdf. [Google Scholar]
  • Pimpalkar R., Sahu A., Yadao A., Patil R.B. (2024) Failure modes and effects analysis of polycrystalline photovoltaic modules exposed to the composite climate of India, J. Inst. Eng. Ser. C 105, 339–355. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.