Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 80, 2025
|
|
---|---|---|
Article Number | 47 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.2516/stet/2025027 | |
Published online | 29 July 2025 |
- Igliński B., Kiełkowska U., Pietrzak M.B., Skrzatek M., Kumar G., Piechota G. (2023) The regional energy transformation in the context of renewable energy sources potential, Renew. Energy 218, 119246. https://doi.org/10.1016/j.renene.2023.119246. [Google Scholar]
- Wang X., Yan R., Zhao Y., Cheng S., Han Y., Yang S., Cai D., Mang H.P., Li Z. (2020) Biogas standard system in China, Renew. Energy 157, 1265–1273. https://doi.org/10.1016/J.RENENE.2020.05.064. [Google Scholar]
- Pilarski K., Pilarska A.A., Boniecki P., Niedbała G., Durczak K., Witaszek K., Mioduszewska N., Kowalik I. (2020) The efficiency of industrial and laboratory anaerobic digesters of organic substrates: The use of the biochemical methane potential correction coefficient, Energies 13, 5, 1280. [Google Scholar]
- Jain S. (2019) Global potential of biogas. [Google Scholar]
- Heerenklage J., Rechtenbach J., Atamaniuk I., Alassali A., Raga R., Koch K., Kuchta K. (2019) Development of a method to produce standardised and storable inocula for biomethane potential tests – preliminary steps, Renew. Energy 143, 753–761. https://doi.org/10.1016/J.RENENE.2019.05.037. [Google Scholar]
- Chandra R., Takeuchi H., Hasegawa T. (2012) Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production, Renew. Sustain. Energy Rev. 16, 3, 1462–1476. https://doi.org/10.1016/J.RSER.2011.11.035. [Google Scholar]
- Nandi S., Ahmed S., Khurpade P.D. (2023) Chapter 5 – Anaerobic digestion of fruit and vegetable waste for biogas and other biofuels, in: Mandavgane S.A., Chakravarty I., Jaiswal A.K. (eds.), Fruit and Vegetable Waste Utilization and Sustainability, Academic Press, pp. 101–119. https://doi.org/10.1016/B978-0-323-91743-8.00007-1. [Google Scholar]
- Franchetti M. (2013) Economic and environmental analysis of four different configurations of anaerobic digestion for food waste to energy conversion using LCA for: a food service provider case study, J. Environ. Manage. 123, 42–48. https://doi.org/10.1016/J.JENVMAN.2013.03.003. [Google Scholar]
- Ullah Khan I., Hafiz Dzarfan Othman M., Hashim H., Matsuura T., Ismail A.F., Rezaei-DashtArzhandi M., Wan Azelee I. (2017) Biogas as a renewable energy fuel – a review of biogas upgrading, utilisation and storage, Energy Convers. Manage. 150, 277–294. https://doi.org/10.1016/j.enconman.2017.08.035. [Google Scholar]
- Yoro K.O., Daramola M.O. (2020) Chapter 1 – CO2 emission sources, greenhouse gases, and the global warming effect, in: Rahimpour M.R., Farsi M., Makarem M.A. (eds), Advances in carbon capture, Woodhead Publishing, pp. 3–28. https://doi.org/10.1016/B978-0-12-819657-1.00001-3. [Google Scholar]
- Ignatowicz K., Filipczak G., Dybek B., Wałowski G. (2023) Biogas production depending on the substrate used: a review and evaluation study – European examples, Energies 16, 2, 798. https://doi.org/10.3390/en16020798. [Google Scholar]
- Dolganyuk V., Belova D., Babich O., Prosekov A., Ivanova S., Katserov D., Patyukov N., Sukhikh S. (2020) Microalgae: a promising source of valuable bioproducts, Biomolecules 10, 8, 1153. https://doi.org/10.3390/biom10081153. [Google Scholar]
- Ajibola H., Junior J., Haruna I. (2013) Development of anaerobic digester for the production of biogas using poultry and cattle dung: a case study of federal university of technology Minna cattle & poultry pen, Int. J. Life Sci 2, 3, 139–149. https://www.crdeep.com. [Google Scholar]
- Banerjee S., Prasad N., Selvaraju S. (2021) Reactor design for biogas production-a short review, J Energy Power Technol. 4, 1, 004. https://doi.org/10.21926/jept.2201004. [Google Scholar]
- Thanarasu A., Periyasamy K., Subramanian S. (2022) An integrated anaerobic digestion and microbial electrolysis system for the enhancement of methane production from organic waste: Fundamentals, innovative design and scale-up deliberation, Chemosphere 287, 131886. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131886. [Google Scholar]
- Bond T., Templeton M.R. (2011) History and future of domestic biogas plants in the developing world, Energy Sustain. Dev. 15, 4, 347–354. [Google Scholar]
- Bhat P.R., Chanakya H.N., Ravindranath N.H. (2001) Biogas plant dissemination: success story of Sirsi, India, Energy Sustain. Dev. 5, 1, 39–46. [Google Scholar]
- Perea-Moreno M.A., Samerón-Manzano E., Perea-Moreno A.J. (2019) Biomass as renewable energy: worldwide research trends, Sustainability (Switzerland) 11, 3, 863. https://doi.org/10.3390/su11030863. [Google Scholar]
- Sahota S., Shah G., Ghosh P., Kapoor R., Sengupta S., Singh P., Vijay V., Sahay A., Vijay V.K., Thakur I.S. (2018) Review of trends in biogas upgradation technologies and future perspectives, Bioresour. Technol. Rep. 1, 79–88. https://doi.org/10.1016/J.BITEB.2018.01.002. [CrossRef] [Google Scholar]
- Tomczak W., Gryta M., Grubecki I., Miłek J. (2023) Biogas production in AnMBRS via treatment of municipal and domestic wastewater: opportunities and fouling mitigation strategies, Appl. Sci. 13, 11, 6466. https://doi.org/10.3390/app13116466. [Google Scholar]
- Fry L.J., Merrill R., Merrill Y. (1973) Methane digesters for fuel gas and fertilizer with complete instruction for two working models, New Alchemy Institute. [Google Scholar]
- Haynes W.M. (2016) CRC handbook of chemistry and physics, CRC Press, https://doi.org/10.1201/9781315380476. [Google Scholar]
- Elmoutez S., Abushaban A., Necibi M.C., Sillanpää M., Liu J., Dhiba D., Chehbouni D., Taky M. (2023) Design and operational aspects of anaerobic membrane bioreactor for efficient wastewater treatment and biogas production, Environ. Chall. 10, 100671. https://doi.org/10.1016/J.ENVC.2022.100671. [Google Scholar]
- Madigan M., Martinko J., Parker J. (2000) Brock’s Biology of Microorganisms, 9th edn. Prentice Hall. [Google Scholar]
- Raskin L., Poulsen L.K., Noguera D.R., Rittmann B.E., Stahl D.A. (1994) Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization, Appl. Environ. Microbiol. 60, 4, 1241–1248. https://doi.org/10.1128/aem.60.4.1241-1248.1994. [Google Scholar]
- Micolucci F., Gottardo M., Bolzonella D., Pavan P., Majone M., Valentino F. (2020) Pilot-scale multi-purposes approach for volatile fatty acid production, hydrogen and methane from an automatic controlled anaerobic process, J. Cleaner Prod. 277, 124297. https://doi.org/10.1016/J.JCLEPRO.2020.124297. [Google Scholar]
- Batstone D.J., Keller J., Angelidaki I., Kalyuzhnyi S.V., Pavlostathis S.G., Rozzi A., Sanders W.T.M., Siegrist H., Vavilin V.A. (2002) The IWA Anaerobic Digestion Model No 1 (ADM1), Water Sci. Technol. 45, 10, 65–73. [Google Scholar]
- Ali A., Mahar R.B., Panhwar S., Keerio H.A., Khokhar N.H., Suja F., Rundong L. (2022) Generation of green renewable energy through anaerobic digestion technology (ADT): technical insights review, Waste Biomass Valorization 14, 663–686. https://doi.org/10.1007/s12649-022-02001-7. [Google Scholar]
- Mata-Alvarez J., Macé S., Llabrés P. (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives, Bioresour. Technol. 74, 1, 3–16. https://doi.org/10.1016/S0960-8524(00)00023-7. [Google Scholar]
- Khalid A., Arshad M., Anjum M., Mahmood T., Dawson L. (2011) The anaerobic digestion of solid organic waste, Waste Manage. 31, 8, 1737–1744. https://doi.org/10.1016/J.WASMAN.2011.03.021. [Google Scholar]
- Lee D.H., Behera S.K., Kim J.W., Park H.S. (2009) Methane production potential of leachate generated from Korean food waste recycling facilities: a lab-scale study, Waste Manage. 29, 2, 876–882. https://doi.org/10.1016/J.WASMAN.2008.06.033. [Google Scholar]
- Jiang Y., McAdam E., Zhang Y., Heaven S., Banks C., Longhurst P. (2019) Ammonia inhibition and toxicity in anaerobic digestion: a critical review, J. Water Process Eng. 32, 100899. https://doi.org/10.1016/J.JWPE.2019.100899. [Google Scholar]
- Sihlangu E., Luseba D., Regnier T., Magama P., Chiyanzu I., Nephawe K.A. (2024) Investigating methane, carbon dioxide, ammonia, and hydrogen sulphide content in agricultural waste during biogas production, Sustainability 16, 12, 5145. https://doi.org/10.3390/su16125145. [Google Scholar]
- Sagagi B.S., Garba B., Usman N.S. (2009) Studies on biogas production from fruits and vegetable waste, Bayero J. Pure Appl. Sci. 2, 1, 115–118. https//doi.org/10.4314/bajopas.v2i1.58513. [Google Scholar]
- Abdelsalam E., Samer M., Attia Y.A., Abdel-Hadi M.A., Hassan H.E., Badr H.E. (2016) Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry, Renew. Energy 87, 592–598. https://doi.org/10.1016/J.RENENE.2015.10.053. [Google Scholar]
- Orlando M.Q., Borja V.M. (2020) Pretreatment of animal manure biomass to improve biogas production: a review, Energies 13, 14, 3573. https://doi.org/10.3390/en13143573. [Google Scholar]
- Bridgwater T. (2006) Biomass for energy, J. Sci. Food Agric. 86, 12, 1755–1768. https://doi.org/10.1002/jsfa.2605. [Google Scholar]
- Agbor V.B., Cicek N., Sparling R., Berlin A., Levin D.B. (2011) Biomass pretreatment: Fundamentals toward application, Biotechnol. Adv. 29, 6, 675–685. https://doi.org/10.1016/J.BIOTECHADV.2011.05.005. [CrossRef] [Google Scholar]
- Sarker S., Lamb J.J., Hjelme D.R., Lien K.M. (2019) A review of the role of critical parameters in the design and operation of biogas production plants, Appl. Sci. 9, 9, 1915. https://doi.org/10.3390/app9091915. [Google Scholar]
- de Souza Guimarães C., da Silva Maia D.R. (2023) Development of anaerobic biodigester for the production of biogas used in semi-continuous system bioprocesses: an efficient alternative for co-digestion of low biodegradability biomass, Biomass (Switzerland) 3, 1, 18–30. https://doi.org/10.3390/biomass3010002. [Google Scholar]
- Nevzorova T., Kutcherov V. (2019) Barriers to the wider implementation of biogas as a source of energy: a state-of-the-art review, Energy Strat. Rev. 26, 100414. [Google Scholar]
- Kozłowski K., Pietrzykowski M., Czekała W., Dach J., Kowalczyk-Juśko A., Jóźwiakowski K., Brzoski M. (2019) Energetic and economic analysis of biogas plant with using the dairy industry waste, Energy 183, 1023–1031. [Google Scholar]
- Ajieh M.U., Ogbomida T.E., Onochie U.P., Akingba O., Kubeyinje B.F., Orerome O.R., Ogbonmwan S.M. (2020) Design and construction of fixed dome digester for biogas production using cow dung and water hyacinth, Afr. J. Environ. Sci. Technol. 14, 1, 15–25. https://doi.org/10.5897/ajest2019.2739. [Google Scholar]
- Obileke K., Mamphweli S., Meyer E.L., Makaka G., Nwokolo N., Onyeaka H. (2020) Comparative study on the performance of aboveground and underground fixed-dome biogas digesters, Chem. Eng. Technol. 43, 1, 68–74. https://doi.org/https://doi.org/10.1002/ceat.201900378. [Google Scholar]
- Oji Achuka N., Chukwuka Paul O., Chibundo Emmanuel C., Chukwuemeka I., Ginika Frances U., Emmanuel Amagu E., Augustine Dinobi O. (2023) Effect of ground insulation and feed stock on performance of fixed dome biogas digester, Agric. Eng. Int. 25, 2, 145–171. http://www.cigrjournal.org. [Google Scholar]
- Lee M.E., Steiman M.W., Angelo S.K.St. (2021) Biogas digestate as a renewable fertilizer: effects of digestate application on crop growth and nutrient composition, Renew. Agric. Food Syst. 36, 2, 173–181. https://doi.org/10.1017/S1742170520000186. [Google Scholar]
- Weather Atlas (n.d.) Jeddah weather in May, Saudi Arabia, Weather Atlas, Available at https://www.weather-atlas.com/en/saudi-arabia/jeddah-weather-may (January 25, 2024). [Google Scholar]
- Obileke K., Mamphweli S., Meyer E., Makaka G., Nwokolo N. (2020) Design and fabrication of a plastic biogas digester for the production of biogas from cow dung, J. Eng. 2020, 1–11. https://doi.org/10.1155/2020/1848714. [Google Scholar]
- Jiménez Vásquez A.F. (2023) Atlas del potencial técnico energético aprovechable por digestión anaerobia de la biomasa residual pecuaria para los subsectores porcícola y ganadería de leche especializada en el departamento de Antioquia, Master’s thesis. Universidad de Medellín, Facultad de Ingeniería, Maestría en Ingeniería Urbana. Available at https://repository.udem.edu.co/handle/11407/6604. [Google Scholar]
- Moharir S., Bondre A., Vaidya S., Patankar P., Kanaskar Y., Karne H. (2020) Comparative analysis of the amount of biogas produced by different cultures using the modified Gompertz model and logistic model, Eur. J. Sustain. Dev. Res. 4, 4, em0141. https://doi.org/10.29333/ejosdr/8550. [Google Scholar]
- Jeppu G.P., Janardhan J., Kaup S., Janardhanan A., Mohammed S., Acharya S. (2022) Effect of feed slurry dilution and total solids on specific biogas production by anaerobic digestion in batch and semi-batch reactors, J. Mater. Cycles Waste Manage. 24, 1, 97–110. https://doi.org/10.1007/s10163-021-01298-1. [Google Scholar]
- Srivastava A., Sharma V.P. (2021) Water quality monitoring and management: importance, applications, and analysis, Appl. Water Sci 1, 421–440. https://doi.org/10.1002/9781119725237.ch16. [Google Scholar]
- Erber D., Cammann K., Roth J. (1997) New universal quartz burner for decomposition of samples by the Wickbold combustion technique in determination of arsenic, antimony, selenium, mercury, and lead, J. AOAC Int. 80, 5, 1084–1090. https://doi.org/10.1093/jaoac/80.5.1084. [Google Scholar]
- Akhter S., Rather L.J., Ganie S.A., Dar O.A., Hassan Q.P. (2019) Recent advances in the processing of modern methods and techniques for textile effluent remediation – a review, in: Shabbir M. (ed), Textiles and clothing: environmental concerns and solutions, Scrivener Publishing LLC, pp. 225–290. https://doi.org/10.1002/9781119526599.ch10. [Google Scholar]
- Kramer T.A., Hill T.K., Beckley J. (2004) Disinfection and dewatering of wastewater solids by interstitial vapor generation, Water Environ. Res. 76, 7, 2664–2671. https://doi.org/10.1002/j.1554-7531.2004.tb00228.x. [Google Scholar]
- Long Y., Meng A., Chen S., Zhou H., Zhang Y., Li Q. (2017) Pyrolysis and combustion of typical wastes in a newly designed macro thermogravimetric analyzer: characteristics and simulation by model components, Energy Fuels 31, 7, 7582–7590. https://doi.org/10.1021/acs.energyfuels.7b00796. [Google Scholar]
- Di Palma L., Verdone N., Chianese A., Di Felice M., Merli C., Petrucci E., Veriani G. (2002) Treatment of wastewater with high inorganic salts content, Environ Eng. Sci. 19, 5, 329–339. https://doi.org/10.1089/10928750260418962. [Google Scholar]
- Guo J., Deng D., Wang D., Yu H., Shi W. (2019) Extended suspect screening strategy to identify characteristic toxicants in the discharge of a chemical industrial park based on toxicity to Daphnia magna, Sci. Total Environ. 650, 10–17. https://doi.org/10.1016/J.SCITOTENV.2018.08.215. [Google Scholar]
- Rocamora I., Wagland S.T., Villa R., Simpson E.W., Fernández O., Bajón-Fernández Y. (2020) Dry anaerobic digestion of organic waste: a review of operational parameters and their impact on process performance, Bioresour. Technol. 299, 122681. https://doi.org/10.1016/J.BIORTECH.2019.122681. [Google Scholar]
- Franca L.S., Bassin J.P. (2020) The role of dry anaerobic digestion in the treatment of the organic fraction of municipal solid waste: a systematic review, Biomass Bioenergy 143, 105866. https://doi.org/10.1016/J.BIOMBIOE.2020.105866. [Google Scholar]
- Li Y., Zhu J., Tang Y., Shi X., Anwar S., Wang J., Gao L., Zhang J. (2023) Impact of varying mass concentrations of ammonia nitrogen on biogas production and system stability of anaerobic fermentation, Agriculture (Switzerland) 13, 8, 1645. https://doi.org/10.3390/agriculture13081645. [Google Scholar]
- Kadam R., Jo S., Lee J., Khanthong K., Jang H., Park J. (2024) A review on the anaerobic co-digestion of livestock manures in the context of sustainable waste management, Energies 17, 3, 546. https://doi.org/10.3390/en17030546. [Google Scholar]
- Angelidaki I., Ellegaard L. (2003) Codigestion of manure and organic wastes in centralized biogas plants, Appl. Biochem. Biotechnol. 109, 1, 95–105. https://doi.org/10.1385/ABAB:109:1-3:95. [Google Scholar]
- Westerholm M., Liu T., Schnürer A. (2020) Comparative study of industrial-scale high-solid biogas production from food waste: process operation and microbiology, Bioresour. Technol. 304, 122981. https://doi.org/10.1016/J.BIORTECH.2020.122981. [Google Scholar]
- Samiotis G., Panou M., Tsioni V., Sfetsas T. (2025)The effect of feeding on microbiome and biogas composition in 2 anaerobic CSTR. 11. https://doi.org/10.1101/2025.02.07.637154. [Google Scholar]
- Nekhubvi V., Tinarwo D. (2022) Prediction of slurry operating temperature and biogas production rate using ambient temperature forecast as input parameter for underground brick-built biogas digesters, Cogent Eng. 9, 1, 2034375. https://doi.org/10.1080/23311916.2022.2034375. [Google Scholar]
- Sudiartha G.A.W., Imai T., Mamimin C., Reungsang A. (2023) Effects of temperature shifts on microbial communities and biogas production: an in-depth comparison, Fermentation 9, 7, 642. https://doi.org/10.3390/fermentation9070642. [Google Scholar]
- de Souza Guimarães C., da Silva Maia D.R. (2023) Development of anaerobic biodigester for the production of biogas used in semi-continuous system bioprocesses: an efficient alternative for co-digestion of low biodegradability biomass, Biomass (Switzerland) 3, 1, 18–30. https://doi.org/10.3390/biomass3010002. [Google Scholar]
- Prussi M., Padella M., Conton M., Postma E.D., Lonza L. (2019) Review of technologies for biomethane production and assessment of Eu transport share in 2030, J. Clean. Prod. 222, 565–572. https://doi.org/10.1016/J.JCLEPRO.2019.02.271. [Google Scholar]
- Arfan M., Wang Z., Soam S., Eriksson O. (2021) Biogas as a transport fuel – a system analysis of value chain development in a Swedish context, Sustainability (Switzerland) 13, 8, 4560. https://doi.org/10.3390/su13084560. [Google Scholar]
- Mir M.A., Chang S.K., Hefni D. (2024) A comprehensive review on challenges and choices of food waste in Saudi Arabia: exploring environmental and economic impacts, Environ. Syst. Res. 13, 1, 40. https://doi.org/10.1186/s40068-024-00364-5. [Google Scholar]
- Hadidi L.A., Omer M.M. (2017) A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia, Waste Manage. 59, 90–101. https://doi.org/10.1016/J.WASMAN.2016.09.030. [Google Scholar]
- Sadiq M., Khan M., Kaneesamkandi Z. (2013) Biodegradable waste to biogas: renewable energy option for the Kingdom of Saudi Arabia, Int. J. Innov. Appl. Stud. 4, 1, 101–113. http://www.issr-journals.org/ijias/. [Google Scholar]
- Kusch-Brandt S., Heaven S., Banks C.J. (2023) Unlocking the full potential: new frontiers in anaerobic digestion (AD) processes, Processes 11, 6, 1669. https://doi.org/10.3390/pr11061669. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.