Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 80, 2025
Innovative Strategies and Technologies for Sustainable Renewable Energy and Low-Carbon Development
|
|
---|---|---|
Article Number | 26 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.2516/stet/2024112 | |
Published online | 25 February 2025 |
- El-Adawy M. (2023) Effects of diesel-biodiesel fuel blends doped with zinc oxide nanoparticles on performance and combustion attributes of a diesel engine, Alexandria Eng. J. 80, 269–281. [CrossRef] [Google Scholar]
- Ooi J.B., Ismail H.M., Tan B.T., Wang X. (2018) Effects of graphite oxide and single walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine, Energy 161, 70–80. [CrossRef] [Google Scholar]
- Yana S., Nizar M., Mulyati D. (2022) Biomass waste as a renewable energy in developing bio-based economies in Indonesia: a review, Renew. Sustain. Energy Rev. 160, 112268. [CrossRef] [Google Scholar]
- Sharma A., Singh Y., Singh N.K., Singla A., Ong H.C., Chen W.H. (2020) Effective utilization of tobacco (Nicotiana Tabaccum) for biodiesel production and its application on diesel engine using response surface methodology approach, Fuel 273, 117793. [CrossRef] [Google Scholar]
- Maawa W.N., Mamat R., Najafi G., De Goey L.P.H. (2020) Performance, combustion, and emission characteristics of a CI engine fueled with emulsified diesel-biodiesel blends at different water contents, Fuel 267, 117265. [CrossRef] [Google Scholar]
- Yılmaz N., Atmanlı A., Hall M.J., Vigil F.M. (2022) Determination of the optimum blend ratio of diesel, waste oil derived biodiesel and 1-pentanol using the response surface method, Energies 15, 14, 5144. [CrossRef] [Google Scholar]
- Yaashikaa P.R., Kumar P.S., Karishma S. (2022) Bio-derived catalysts for production of biodiesel: a review on feedstock, oil extraction methodologies, reactors and lifecycle assessment of biodiesel, Fuel 316, 123379. [CrossRef] [Google Scholar]
- Jain A., Bora B.J., Kumar R., Sharma P., Deepanraj B., Irshad K., Ravikiran C. (2023) Application of hybrid Taguchi L16 and desirability for model prediction and optimization in assessment of the performance of a novel Water Hyacinth biodiesel run diesel engine, Fuel 339, 127377. [CrossRef] [Google Scholar]
- Ashok A., Gugulothu S.K., Reddy R.V., Gurel A.E., Deepanraj B. (2022) Prediction-optimization of the influence of 1-pentanol/jatropha oil blends on RCCI engine characteristics using multi-objective response surface methodology, Renew. Energy Focus 42, 8–23. [CrossRef] [Google Scholar]
- Solmaz H., Sürer E., Yılmaz E., Calam A., İpci D. (2023) Investigation of the effect of carbon nanotube addition to diesel-biodiesel blend on engine performance and exhaust emissions, J. Faculty Eng. Archit. Gazi Univ. 38, 2, 1055–1064. [Google Scholar]
- Solmaz H., Calam A., Yılmaz E., Şahin F., Ardebili S.M.S., Aksoy F. (2023) Evaluation of MWCNT as fuel additive to diesel-biodiesel blend in a direct injection diesel engine, Biofuels-UK 14, 2, 147–156. [CrossRef] [Google Scholar]
- Shekofteh M., Gundoshmian T.M., Jahanbakhshi A., Heidari-Maleni A. (2020) Performance and emission characteristics of a diesel engine fueled with functionalized multi-wall carbon nanotubes (MWCNTs-OH) and diesel–biodiesel–bioethanol blends, Energy Rep. 6, 1438–1447. [CrossRef] [Google Scholar]
- Heidari-Maleni A., Gundoshmian T.M., Jahanbakhshi A., Ghobadian B. (2020) Performance improvement and exhaust emissions reduction in diesel engine through the use of graphene quantum dot (GQD) nanoparticles ethanol-biodiesel blends, Fuel 267, 117116. [CrossRef] [Google Scholar]
- Hoseini S.S., Najafi G., Ghobadian B., Ebadi M.T., Mamat R., Yusaf T. (2020) Biodiesels from three feedstock: the effect of graphene oxide (GO) nanoparticles diesel engine parameters fuelled with biodiesel, Renew. Energy 145, 190–201. [CrossRef] [Google Scholar]
- Solmaz H., Ardebili S.M.S., Calam A., Yılmaz E., İpci D. (2021) Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method, Energy 227, 120518. [CrossRef] [Google Scholar]
- Heydari-Maleney K., Taghizadeh-Alisaraei A., Ghobadian B., Abbaszadeh-Mayvan A. (2017) Analyzing and evaluation of carbon nanotubes additives to diesohol-B2 fuels on performance and emission of diesel engines, Fuel 196, 110–123. [CrossRef] [Google Scholar]
- Shaafi T., Sairam K., Gopinath A., Kumaresan G., Velraj R. (2015) Effect of dispersion of various nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel and blends– A review, Renew. Sustain. Energy Rev. 49, 563–573. [CrossRef] [Google Scholar]
- Selvan V.A.M., Anand R.B., Udayakumar M. (2014) Effect of cerium oxide nanoparticles and carbon nanotubes as fuel-borne additives in diesterol blends on the performance, combustion and emission characteristics of a variable compression ratio engine, Fuel 130, 160–167. [CrossRef] [Google Scholar]
- El-Seesy A.I., Abdel-Rahman A.K., Bady M., Ookawara S. (2017) Performance, combustion, and emission characteristics of a diesel engine fueled by biodiesel-diesel mixtures with multi-walled carbon nanotubes additives, Energy Convers. Manag. 135, 373e93. [Google Scholar]
- Lai C.M., Loo D.L., Teoh Y.H., How H.G., Le T.D., Nguyen H.T., Ghfar A.A., Sher F. (2023) Optimization and performance characteristics of diesel engine using green fuel blends with nanoparticles additives, Fuel 347, 128462. [CrossRef] [Google Scholar]
- Laad M., Jatti V.K.S. (2018) Titanium oxide nanoparticles as additives in engine oil, J. King Saud. Univ. Eng. Sci. 30, 116–122. [Google Scholar]
- Uflyand I.E., Zhinzhilo V.A., Burlakova V.E. (2019) Metal-containing nanomaterials as lubricant additives: state-of-the-art and future development, Friction 7, 93–116. [CrossRef] [Google Scholar]
- Ghanbari M., Mozafari-Vanani L., Dehghani-Soufi M., Jahanbakhshi A. (2021) Effect of alumina nanoparticles as additive with diesel–biodiesel blends on performance and emission characteristic of a six-cylinder diesel engine using response surface methodology (RSM), Energy Convers. Manag. X 11, 100091. [Google Scholar]
- Tyagi H., Phelan P. E., Prasher R., Peck R., Lee T., Pacheco J. R., Arentzen P. (2008) Increased hot-plate ignition probability for nanoparticle-laden diesel fuel, Nano Lett. 8, 5, 1410–1416. [CrossRef] [PubMed] [Google Scholar]
- Günaydın S., Uyumaz A., Kocakulak T., Coşman S., Solmaz H., Aksoy F. (2024) Evaluation of dibutyl maleate/diesel blends on combustion, performance and emissions in a DI diesel engine, Appl. Ther. Eng. 236, 121520. [CrossRef] [Google Scholar]
- Sarma C.J., Sharma P., Bora B.J., Bora D.K., Senthilkumar N., Balakrishnan D., Ayesh A.I. (2023) Improving the combustion and emission performance of a diesel engine powered with mahua biodiesel and TiO2 nanoparticles additive, Alexandria Eng. J. 72, 387–398. [CrossRef] [Google Scholar]
- Alex Y., Earnest J., Raghavan A., Roy R.G., Koshy C.P. (2022) Study of engine performance and emission characteristics of diesel engine using cerium oxide nanoparticles blended orange peel oil methyl ester, Energy Nexus 8, 100150. [CrossRef] [Google Scholar]
- Bitire S.O., Jen T.C. (2022) The role of a novel green synthesized nanoparticles added parsley biodiesel blend on the performance-emission characteristics of a diesel engine, South Afr. J. Chem. Eng. 41, 1, 161–175. [CrossRef] [Google Scholar]
- Kumar S., Dinesha P., Bran I. (2017) Influence of nanoparticles on the performance and emission characteristics of a biodiesel fuelled engine: an experimental analysis, Energy 140, 98–105. [CrossRef] [Google Scholar]
- Opuz M., Uyumaz A., Babagiray M., Solmaz H., Calam A., Aksoy F. (2023) The effects of metallic fuel addition into canola oil biodiesel on combustion, engine performance and exhaust emissions, J. Energy Inst. 111, 101390. [CrossRef] [Google Scholar]
- Razzaq L., Abbas M. M., Waseem A., Jauhar T. A., Fayaz H., Kalam M. A., Soudagar M. E. M., Silitonga A S, Samr-Ul-Husnain, Ishtiaq U. (2023) Influence of varying concentrations of TiO2 nanoparticles and engine speed on the performance and emissions of diesel engine operated on waste cooking oil biodiesel blends using response surface methodology, Heliyon 9, 7, e17758. [CrossRef] [PubMed] [Google Scholar]
- Ansari A.M., Memon L.A., Ghannam M.T., Selim M.Y. (2023) Impact of biodiesel blended fuel with nanoparticles on performance and noise emission in compression ignition engine, Int. J. Thermofluids 19, 100390. [CrossRef] [Google Scholar]
- Mostafa A., Mourad M., Mustafa A., Youssef I. (2023) Influence of aluminum oxide nanoparticles addition with diesel fuel on emissions and performance of engine generator set using response surface methodology, Energy Convers. Manag. X 19, 100389. [Google Scholar]
- Suhel A., Rahim N.A., Rahman M.R.A., Ahmad K.A.B., Khan U., Teoh Y.H., Abidin N.Z. (2023) Impact of ZnO nanoparticles as additive on performance and emission characteristics of a diesel engine fueled with waste plastic oil, Heliyon 9, 4, e14782. [CrossRef] [PubMed] [Google Scholar]
- Simsek S. (2020) Effects of biodiesel obtained from Canola, sefflower oils and waste oils on the engine performance and exhaust emissions, Fuel 265, 117026. [CrossRef] [Google Scholar]
- Nachippan N.M., Parthasarathy M., Elumalai P.V., Backiyaraj A., Balasubramanian D., Hoang A.T. (2022) Experimental assessment on characteristics of premixed charge compression ignition engine fueled with multi-walled carbon nanotube-included Tamanu methyl ester, Fuel 323, 124415. [CrossRef] [Google Scholar]
- Balasubramanian D., Venugopal I.P., Viswanathan K. (2019) Characteristics investigation on Di diesel engine with nano-particles as an additive in lemon grass oil, SAE Technical Paper No. 2019-28-0081 [Google Scholar]
- Aalam C.S., Saravanan C.G., Kannan M. (2015) Experimental investigations on a CRDI system assisted diesel engine fuelled with aluminium oxide nanoparticles blended biodiesel, Alex. Eng. J. 54, 3, 351–358. [CrossRef] [Google Scholar]
- Balasubramanian D., Inbanaathan P.V., Gugulothu S.K., Noga M. (2021) Characterization of single-cylinder di diesel engine fueled with waste cooking oil biofuel/diesel blends, in: Alternative fuels and advanced combustion techniques as sustainable solutions for internal combustion engines, Springer Singapore, Singapore, pp. 173–196. [CrossRef] [Google Scholar]
- Xie J., Li X., Hu Y. (2023) Catalytic properties of carbon quantum dots in biodiesel applications, J. Renew. Energy. [Google Scholar]
- Wang F., Ma L., Shi Y. (2022) Thermal properties and catalytic effects of carbon quantum dots on biodiesel combustion, Int. J. Green Energy. [Google Scholar]
- Zhang W., Liu H., Zhao T. (2023) Impact of carbon quantum dots on heat transfer and emission characteristics of biodiesel, J. Clean Prod. [Google Scholar]
- Chen Z., et al. (2021) Microwave-assisted biodiesel synthesis and the role of carbon quantum dots, Renew. Energy Rev. [Google Scholar]
- Lin M., Zhou Y., Tang J. (2024) Emission control using carbon quantum dots as fuel additives in CI engines, Molecules. Available at: https://www.mdpi.com/1420-3049/29/9/2002. [Google Scholar]
- Isah A.G., Faruk A.A., Musa U., Garba U.M., Alhassan M., Abdullahi U.B., Damian A.T. (2022) Oxidation stability and cold flow properties of biodiesel synthesized from castor oil: influence of alkaline catalysts type and purification techniques, Mater. Today Proc. 57, 748–752. [CrossRef] [Google Scholar]
- Gopi R., Thangarasu V., Ramanathan A. (2022) A critical review of recent advancements in continuous flow reactors and prominent integrated microreactors for biodiesel production, Renew. Sustain. Energy Rev. 154, 111869. [CrossRef] [Google Scholar]
- Fukuda H., Kondo A., Noda H. (2001) Biodiesel fuel production by transesterification of oils, J. Biosci. Bioeng. 92, 5, 405–416. [CrossRef] [Google Scholar]
- Ghaly A.E., Dave D., Brooks M.S., Budge S. (2010) Production of biodiesel by enzymatic transesterification, Am. J. Biochem. Biotechnol. 6, 2, 54–76. [CrossRef] [Google Scholar]
- Lourenço V.A., Nadaleti W.C., Vieira B.M., Li H. (2021) Investigation of ethyl biodiesel via transesterification of rice bran oil: bioenergy from residual biomass in Pelotas, Rio Grande do Sul-Brazil, Renew. Sustain. Energy Rev. 144, 111016. [CrossRef] [Google Scholar]
- Aksoy L. (2011) Opium poppy (Papaver somniferum L.) oil for preparation of biodiesel: optimization of conditions, Appl. Energy 88, 12, 4713–4718. [CrossRef] [Google Scholar]
- Hsiao M.C., Lin C.C., Chang Y.H., Chen L.C. (2010) Ultrasonic mixing and closed microwave irradiation-assisted transesterification of soybean oil, Fuel 89, 12, 3618–3622. [CrossRef] [Google Scholar]
- Athar M., Imdad S., Zaidi S., Yusuf M., Kamyab H., Klemeš J.J., Chelliapan S. (2022) Biodiesel production by single-step acid-catalysed transesterification of Jatropha oil under microwave heating with modelling and optimisation using response surface methodology, Fuel 322, 124205. [CrossRef] [Google Scholar]
- Taheri-Garavand A., Heidari-Maleni A., Mesri-Gundoshmian T., Samuel O.D. (2022) Application of artificial neural networks for the prediction of performance and exhaust emissions in IC engine using biodiesel-diesel blends containing quantum dot based on carbon doped, Energy Convers. Manag. X 16, 100304. [Google Scholar]
- Mary L.L.G., Manivel S., Garg S., Nagam V.B., Garse K., Mali R., Baig R.U. (2023) Exploring the impact of Al2O3 additives in gasoline on HCCI-DI engine performance: an experimental, neural network, and regression analysis approach ACS Omega 8, 50, 47701–47713. [CrossRef] [PubMed] [Google Scholar]
- Heywood J.B. (1988) Internal combustion engines fundamentals. USA: McGraw-Hill. [Google Scholar]
- Zhao H. (2007) HCCI and CAI engines for the automotive industry. Cambridge, UK: Woodhead Publishing Ltd. [Google Scholar]
- Stone R. (1999) Introduction to internal combustion engines, Macmillan Press Ltd, pp. 295–300. ISBN 0-333-74013-0, Tesseraux, I.;Toxicoll, Lett., 2004, 149. [Google Scholar]
- Eng J.A. (2022) Characterization of pressure waves in HCCI combustion, SAE Paper 2002-01-2859. [Google Scholar]
- Polat S., Kannan K., Shahbakhti M., Uyumaz A., Yücesu H.S. (2015) An experimental study for the effects of supercharging on performance and combustion of an early direct injection HCCI engine, in: 2nd International Conference On Science, Technology, Engineering And Management, 3–4 July, Dubai. [Google Scholar]
- Tsurushima T. (2009) A newskeletal PRF kinetic model for HCCI combustion, Proc. Combust. Inst. 32, 2835–2841. [CrossRef] [Google Scholar]
- Amano T., Morimoto S., Kawabata Y. (2001) Modeling of the effect of air/fuel ratio and temperature distribution on HCCI engines, SAE Technical Paper 2001-01-1024. [Google Scholar]
- Sjöberg M., Edling L., Eliassen T., Magnusson L., Angstrm H. (2002) GDI HCCI: effects of injection timing and air swirl on fuel stratification, combustion and emissions formation, SAE Technical Paper 2002-01-0106. [Google Scholar]
- Wildman C., Scaringe R.J., Cheng W. (2009) On the maximum pressure rise rate in boosted HCCI operation, SAE 2009. [Google Scholar]
- Razzaq L., Mujtaba M. A., Soudagar M. E. M., Ahmed W., Fayaz H., Bashir S., Fattah I. M. R., Ong H. C., Shahapurkar K., Afzal A., Wageh S., Al-Ghamdi A., Ali M. S., El-Seesy A. I. (2021) Engine performance and emission characteristics of palm biodiesel blends with graphene oxide nanoplatelets and dimethyl carbonate additives, J. Environ. Manag. 282, 111917. [CrossRef] [Google Scholar]
- Qian W., Huang H., Pan M., Huang R., Tong C., Guo X., Yin J. (2020) Effects of 2-ethylhexyl nitrate and post-injection strategy on combustion and emission characterizes in a dimethyl carbonate/diesel blending engine, Fuel 263, 116687. [CrossRef] [Google Scholar]
- Pan M., Qian W., Zheng Z., Huang R., Zhou X., Huang H., Li M. (2019) The potential of dimethyl carbonate (DMC) as an alternative fuel for compression ignition engines with different EGR rates, Fuel 257, 115920. [CrossRef] [Google Scholar]
- Wang X., Cheung C.S., Di Y., Huang Z. (2012) Diesel engine gaseous and particle emissions fueled with diesel–oxygenate blends, Fuel 94, 317–323. [CrossRef] [Google Scholar]
- Barrientos E.J., Lapuerta M., Boehman A.L. (2013) Group additivity in soot formation for the example of C-5 oxygenated hydrocarbon fuels, Combust. Flame 160, 8, 1484–1498. [CrossRef] [Google Scholar]
- Singh S., Kumar A., Mahla S.K., Batth G.S. (2013) Experimental study on emission analysis of oxygenated fuels dimethyl carbonate (DMC) and dibutyl maleate (DBM) in a CI engine, Int. J. Res. Eng. Technol. 2, 10, 158–162. [Google Scholar]
- Cheung C.S., Zhu R., Huang Z. (2011) Investigation on the gaseous and particulate emissions of a compression ignition engine fueled with diesel-dimethyl carbonate blends, Sci. Total Environ. 409, 3, 523–529. [CrossRef] [Google Scholar]
- El-Fakharany M.K., Abdelrazek A.S., Baz F.B., Gad M.S. (2024) Impact of nano-TiO2 combination with biodiesel on diesel engine performance and emissions under fuel magnetism conditioning, Arab. J. Sci. Eng., 1–16. [Google Scholar]
- Zheng F., Cho H.M. (2024) The comprehensive effects of nano additives on biodiesel engines –a review, Energies 17, 16, 4126. [CrossRef] [Google Scholar]
- Yelvington P., Green W. (2003) Prediction of the knock limit and viable operating range for a homogeneous-charge compression-ignition (HCCI) engine, SAE Technical paper 2003-01-1092. [Google Scholar]
- Kumar N., Varun Chauhan S.R. (2013) Performance and emission characteristics of biodiesel from different origins: a review, Renew. Sustain. Energy Rev. 21, 633–658. [CrossRef] [Google Scholar]
- Dhanarasu M., Ramesh Kumar K.A., Maadeswaran P. (2022) Recent trends in role of nanoadditives with diesel–biodiesel blend on performance, combustion and emission in diesel engine: a review, Int. J. Thermophys. 43, 11, 171. [CrossRef] [Google Scholar]
- Devarajan Y. (2019) Experimental evaluation of combustion, emission and performance of research diesel engine fuelled Di-methyl-carbonate and biodiesel blends, Atmos. Pollut. Res. 10, 3, 795–801. [CrossRef] [Google Scholar]
- Zhang J., Niu S., Zhang Y., Tang C., Jiang X., Hu E., Huang Z. (2013) Experimental and modeling study of the auto-ignition of n-heptane/n-butanol mixtures, Combust. Flame 160, 1, 31–39. [CrossRef] [Google Scholar]
- Chen G., Shen Y., Zhang Q., Yao M., Zheng Z., Liu H. (2013) Experimental study on combustion and emission characteristics of a diesel engine fueled with 2, 5-dimethylfuran–diesel, n-butanol–diesel and gasoline–diesel blends, Energy 54, 333–342. [CrossRef] [Google Scholar]
- Glaude P.A., Pitz W.I., Thomson M.J. (2005) Chemical kinetic modeling of dimethyl carbonate in an opposed-flow diffusion flame, Proc. Combust. Inst. 30, 1111–1118. [CrossRef] [Google Scholar]
- Sun W., Yang B., Hansen N., Westbrook C.K., Zhang F., Wang G., Moshammer K., Law C.K. (2016) An experimental and kinetic modeling study on dimethyl carbonate (DMC) pyrolysis and combustion, Combust. Flame 164, 224–238. [CrossRef] [Google Scholar]
- Soudagar M.E.M., Nik-Ghazali N.-N., Kalam M.A., Badruddin I., Banapurmath N., Akram N. (2018) The effect of nano-additives in diesel-biodiesel fuel blends: a comprehensive review on stability, engine performance and emission characteristics, Energy Convers. Manag. 178, 146–177. [CrossRef] [Google Scholar]
- Lu X.C., Yang J.G., Zhang W.G., Huang Z. (2005) Improving the combustion and emissions of direct injection compression ignition engines using oxygenated fuel additives combined with a cetane number improver, Energy Fuels 19, 1879–1888. [CrossRef] [Google Scholar]
- Zhao F., Yang W., Yu W., Li H., Sim Y.Y., Liu T., Tay K.L. (2018) Numerical study of soot particles from low temperature combustion of engine fueled with diesel fuel and unsaturation biodiesel fuels, Appl. Energy 211, 187–193. [CrossRef] [Google Scholar]
- Sharifianjazi F., Esmaeilkhanian A., Karimi N., Horri B.A., Bazli L., Eskandarinezhad S., Ahmadi E. (2023) A review of combustion properties, performance, and emission characteristics of diesel engine fueled with Al2O3 nanoparticle-containing biodiesel, Clean Technol. Environ. Policy 1–23. [Google Scholar]
- Lv J., Wang S., Meng B. (2022) The effects of nano-additives added to diesel-biodiesel fuel blends on combustion and emission characteristics of diesel engine: a review, Energies 15, 3, 1032. [CrossRef] [Google Scholar]
- Srinivasan S.K., Kuppusamy R., Krishnan P. (2021) Effect of nanoparticle-blended biodiesel mixtures on diesel engine performance, emission, and combustion characteristics, Environ. Sci. Pollut. Res. Int. 28, 29, 39210–39226. [CrossRef] [PubMed] [Google Scholar]
- Sai Roshita B., Annapurna B., Sai Kumari Ch., Guna Deep E., Manoj Kumar B., Kumar Mohith B., Chiranjeeva R.S. (2023) Diesel engine performance: a study on biodiesel blends and nano-enhanced fuel additives, Int. J. Res. Publ. Rev. 4, 10, 1210–1214. [Google Scholar]
- Ilyas H., Pawar S.S., Chopra M.K. (2022) Nanoparticles as fuel additives in biodiesel: a review, Int. J. Innov. Res. Sci. Eng. Technol. 7, 4, 4–10. [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.