Issue |
Sci. Tech. Energ. Transition
Volume 80, 2025
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
|
|
---|---|---|
Article Number | 27 | |
Number of page(s) | 22 | |
DOI | https://doi.org/10.2516/stet/2024114 | |
Published online | 27 February 2025 |
- Iyke B.N. (2024) Climate change, energy security risk, and clean energy investment, Energy Econ. 129, 2023, 107225. https://doi.org/10.1016/j.eneco.2023.107225. [CrossRef] [Google Scholar]
- Maradin D. (2021) Advantages and disadvantages of renewable energy sources utilization, Int. J. Energy Econ. Policy 11, 3, 176–183. https://doi.org/10.32479/ijeep.11027. [CrossRef] [Google Scholar]
- Murray B. (2019) The paradox of declining renewable costs and rising electricity prices, Forbes. Available at https://www.forbes.com/sites/brianmurray1/2019/06/17/the-paradox-of-declining-renewable-costs-and-rising-electricity-prices/. [Google Scholar]
- Elshafei M., Ibrahim A., Helmy A., Abdallah M., Eldeib A., Badawy M., AbdelRazek S. (2021) Study of massive floating solar panels over Lake Nasser, J. Energy 2021, 1–17. https://doi.org/10.1155/2021/6674091. [CrossRef] [Google Scholar]
- Cuce E., Cuce P.M., Saboor S., Ghosh A., Sheikhnejad Y. (2022) Floating PVs in terms of power generation, environmental aspects, market potential, and challenges, Sustainability 14, 5, 2626. https://doi.org/10.3390/su14052626. [CrossRef] [Google Scholar]
- Islam M.I., Jadin M.S., Mansur A.A., Kamari N.A.M., Jamal T., Hossain Lipu M.S., Azlan M.N.M., Sarker M.R., Shihavuddin A.S.M. (2023) Techno-economic and carbon emission assessment of a large-scale floating solar PV system for sustainable energy generation in support of Malaysia’s renewable energy roadmap, Energies 16, 4034. https://doi.org/10.3390/en16104034. [CrossRef] [Google Scholar]
- Blengini G. (2020) Floating photovoltaic systems: state of art, feasibility study in Florida and computational fluid dynamic analysis on hurricane resistance, Politecnico Di Torino. [Google Scholar]
- Gadzanku S., Beshilas L., Grunwald U. (2021) Enabling floating solar photovoltaic (FPV) deployment: review of barriers to FPV deployment in Southeast Asia. https://doi.org/10.2172/1787553. [CrossRef] [Google Scholar]
- Gorjian S., Sharon H., Ebadi H., Kant K., Scavo F.B., Tina G.M. (2021) Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems, J. Clean. Prod. 278, 124285. https://doi.org/10.1016/j.jclepro.2020.124285. [CrossRef] [Google Scholar]
- Imtiaz F., Rashid J., Kumar R., Eniola J.O., Barakat M.A.E.F., Xu M. (2024) Recent advances in visible light driven inactivation of bloom forming blue-green algae using novel nano-composites: mechanism, efficiency and fabrication approaches, Environ. Res. 248, 118251. https://doi.org/10.1016/j.envres.2024.118251. [CrossRef] [Google Scholar]
- Abdelgaied M., Kabeel A.E., Zeleňáková M., Abd-Elhamid H.F. (2023) Floating photovoltaic plants as an effective option to reduce water evaporation in water-stressed regions and produce electricity: a case study of Lake Nasser, Egypt, Water (Switzerland) 15, 4, 635. https://doi.org/10.3390/w15040635. [Google Scholar]
- Sahu A., Yadav N., Sudhakar K. (2016) Floating photovoltaic power plant: a review, Renew. Sustain. Energy Rev. 66, 815–824. https://doi.org/10.1016/j.rser.2016.08.051. [CrossRef] [Google Scholar]
- Oliveira-Pinto S. (2020) Marine floating solar plants: an overview of potential, challenges and feasibility, Proc. Inst. Civ. Eng. Marit. Eng. 173, 120–135. [Google Scholar]
- Yousuf H., Khokhar M.Q., Zahid M.A., Kim J., Kim Y., Cho E., Cho Y., Yi J. (2020) A review on floating photovoltaic technology (FPVT), Curr. Photovoltaic Res. 8, 3, 67–78. https://doi.org/10.21218/CPR.2020.8.3.067. [Google Scholar]
- Special Report on Solar PV Global Supply Chains. Spec. Rep. Sol. PV Glob. Supply. Chain. 2022. https://doi.org/10.1787/9e8b0121-en. [Google Scholar]
- Garrod A., Neda Hussain S., Ghosh A., Nahata S., Wynne C., Paver S. (2024) An assessment of floating photovoltaic systems and energy storage methods: a comprehensive review, Results Eng. 21 101940. https://doi.org/10.1016/j.rineng.2024.101940. [CrossRef] [Google Scholar]
- Bax V., van de Lageweg W.I., van den Berg B., Hoosemans R., Terpstra T. (2022) Will it float? Exploring the social feasibility of floating solar energy infrastructure in the Netherlands, Energy Res. Social Sci. 89, 102569. https://doi.org/10.1016/j.erss.2022.102569. [CrossRef] [Google Scholar]
- Lee N., Grunwald U., Rosenlieb E., Mirletz H., Aznar A., Spencer R., Cox S. (2020) Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential, Renew. Energy 162, 1415–1427. https://doi.org/10.1016/j.renene.2020.08.080. [CrossRef] [Google Scholar]
- Micheli L., Talavera D.L., Marco Tina G., Almonacid F., Fernández E.F. (2022) Techno-economic potential and perspectives of floating photovoltaics in Europe, Sol. Energy 243, 203–214. https://doi.org/10.1016/j.solener.2022.07.042. [CrossRef] [Google Scholar]
- López M., Soto F., Hernández Z.A. (2022) Assessment of the potential of floating solar photovoltaic panels in bodies of water in mainland Spain, J. Clean. Prod. 340, 130752. https://doi.org/10.1016/j.jclepro.2022.130752. [CrossRef] [Google Scholar]
- Padilha Campos Lopes M., Nogueira T., Santos A.J.L., Castelo Branco D., Pouran H. (2022) Technical potential of floating photovoltaic systems on artificial water bodies in Brazil, Renew. Energy 181, 1023–1033. https://doi.org/10.1016/j.renene.2021.09.104. [CrossRef] [Google Scholar]
- Dörenkämper M., Wahed A., Kumar A., de Jong M., Kroon J., Reindl T. (2021) The cooling effect of floating PV in two different climate zones: A comparison of field test data from the Netherlands and Singapore, Sol. Energy 219, 15–23. https://doi.org/10.1016/j.solener.2021.03.051. [CrossRef] [Google Scholar]
- Hirbodi K., Enjavi-Arsanjani M., Yaghoubi M. (2019) Techno-economic assessment and environmental impact of concentrating solar power plants in Iran, Renew. Sustain. Energy Rev. 120, 109642. https://doi.org/10.1016/j.rser.2019.109642. [Google Scholar]
- Nagababu G., Bhatt T.N., Patil P., Puppala H. (2024) Technical and economic analysis of floating solar photovoltaic systems in coastal regions of India: a case study of Gujarat and Tamil Nadu, J. Therm. Anal. Calorim. 149, 6897–6904. https://doi.org/10.1007/s10973-024-12971-6. [CrossRef] [Google Scholar]
- Nassar W.M., Anaya-Lara O., Ahmed K.H., Campos-Gaona D., Elgenedy M. (2020) Assessment of multi-use offshore platforms: Structure classification and design challenges, Sustainability 12, 5, 1–23. https://doi.org/10.3390/su12051860. [PubMed] [Google Scholar]
- Kumar M., Mohammed Niyaz H., Gupta R. (2021) Challenges and opportunities towards the development of floating photovoltaic systems, Sol. Energy Mater. Sol. Cells 233, 111408. https://doi.org/10.1016/j.solmat.2021.111408. [CrossRef] [Google Scholar]
- GlobalData (2024) Power plant profile: Huaneng Dezhou Dingzhuang Reservoir Solar PV Park, China, Power Technology. Available at https://www.power-technology.com/marketdata/power-plant-profile-huaneng-dezhou-dingzhuang-reservoir-solar-pv-park-china/. [Google Scholar]
- Chong C. (2021) Singapore’s first large-scale solar floating 20 farm opens at Tengeh Reservoir, The Straits Times. Available at https://www.straitstimes.com/singapore/singapores-first-large-scale-solar-floating-farm-opens-at-tengeh-reservoir. [Google Scholar]
- Saeidtehrani S., Fazeres-Ferradosa T., Rosa-Santos P., Taveira-Pinto F. (2022) Review on floating wave-wind energy converter plants: Nonlinear dynamic assessment tools, Sustain. Energy Technol. Assessments 54, 102753. https://doi.org/10.1016/J.SETA.2022.102753. [CrossRef] [Google Scholar]
- Power-Technology (2021) Sirindhorn Dam Hybrid Solar PV Park, Thailand. Power Technology. Available at https://www.power-technology.com/marketdata/sirindhorn-dam-hybrid-solar-pv-park-thailand/?cf-view. [Google Scholar]
- Oceansun (2024) 2MWp floating solar project to transform maldives resort’s energy use. Available at https://oceansun.no/2mwp-floating-solar-project-to-transform-maldives-resorts-energy-use/. [Google Scholar]
- Clean Technica (2024) China activates world’s largest offshore floating solar installation. Available at https://cleantechnica.com/2024/11/16/china-activates-worlds-largest-offshore-floating-solar-installation/. [Google Scholar]
- PV Magazine (2024) Hexa Renewables commissions the world’s largest offshore floating solar plant. Available at https://www.pv-magazine.com/2024/11/06/hexa-renewables-commissions-worlds-largest-offshore-floating-solar-plant/. [Google Scholar]
- Ramanan C.J., Lim K.H., Kurnia J.C., Roy S., Bora B.J., Medhi B.J. (2023) Towards sustainable power generation: recent advancements in floating photovoltaic technologies, Renew. Sustain. Energy Rev. 194, 114322. https://doi.org/10.1016/j.rser.2024.114322. [Google Scholar]
- Kumagai T., Yanagibashi T., Tsutsumi A., Konishi C., Ueno K. (2020) Efficient surface wave method for investigation of the seabed, Soils Found. 60, 3, 648–667. https://doi.org/10.1016/j.sandf.2020.04.005. [CrossRef] [Google Scholar]
- Diene C.D., Ndiaye M. (2022) Design and application of a multichannel analysis surface waves acquisition system for the pavement layers investigation, Open J. Civ. Eng. 12, 1, 22–37. https://doi.org/10.4236/ojce.2022.121003. [CrossRef] [Google Scholar]
- Deveci M., Pamucar D., Oguz E. (2022) Floating photovoltaic site selection using fuzzy rough numbers based LAAW and RAFSI model, Appl. Energy 324, 119597. https://doi.org/10.1016/j.apenergy.2022.119597. [CrossRef] [Google Scholar]
- Akrouch M.A., Chahine K., Faraj J., Hachem F., Castelain C., Khaled M. (2023) Advancements in cooling techniques for enhanced efficiency of solar photovoltaic panels: A detailed comprehensive review and innovative classification, Energy Built Environ. 6, 2, 248–276. https://doi.org/10.1016/j.enbenv.2023.11.002. [Google Scholar]
- Chirwa D., Goyal R., Mulenga E. (2023) Floating solar photovoltaic (FSPV) potential in Zambia: Case studies on six hydropower power plant reservoirs, Renew. Energy Focus 44, 344–356. https://doi.org/10.1016/j.ref.2023.01.007. [CrossRef] [Google Scholar]
- Al-Rawajfeh A.E., Alharmali K.M., Tarawneh A.H., Igwegbe C.A., Abdalrhman A.S., Talibi M., Alnumani A. (2024) Eco-friendly corrosion inhibition and scale control in seawater using Foeniculum vulgare and Pimpinella anisum extracts with chemical compounds, Results Surf. Interfaces 17, 100285. https://doi.org/10.1016/j.rsurfi.2024.100285. [CrossRef] [Google Scholar]
- Essak L., Ghosh A. (2022) Floating photovoltaics: a review, Clean Technol. 4, 3, 752–769. https://doi.org/10.3390/cleantechnol4030046. [CrossRef] [Google Scholar]
- Yang S., Zhang Y., Tian D., Liu Z., Ma Z. (2024) Water-surface photovoltaic systems have affected water physical and chemical properties and biodiversity, Commun. Earth Environ. 5, 632. https://doi.org/10.1038/s43247-024-01811-y. [CrossRef] [Google Scholar]
- Liu Z., Ma C., Li X., Deng Z., Tian Z. (2023) Aquatic environment impacts of floating photovoltaic and implications for climate change challenges, J. Environ. Manage. 346, 118851. https://doi.org/10.1016/j.jenvman.2023.118851. [CrossRef] [Google Scholar]
- Claus R., López M. (2022) Key issues in the design of floating photovoltaic structures for the marine environment, Renew. Sustain. Energy Rev. 164, 112502. https://doi.org/10.1016/j.rser.2022.112502. [CrossRef] [Google Scholar]
- Fthenakis V.M., Kim H.C. (2011) Photovoltaics: life-cycle analyses, Sol. Energy 85, 8, 1609–1628. https://doi.org/10.1016/j.solener.2009.10.002. [CrossRef] [Google Scholar]
- Alonso-Abella M., Chenlo F., Nofuentes G., Torres-Ramírez M. (2014) Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: the case of four specific sites, Energy 67, 435–443. https://doi.org/10.1016/j.energy.2014.01.024. [CrossRef] [Google Scholar]
- Raugei M., Frankl P. (2009) Life cycle impacts and costs of photovoltaic systems: current state of the art and future outlooks, Energy 34, 3, 392–399. https://doi.org/10.1016/j.energy.2009.01.001. [CrossRef] [Google Scholar]
- Phuangpornpitak N., Kumar S. (2011) User acceptance of diesel/PV hybrid system in an island community, Renew. Energy 36, 1, 125–131. https://doi.org/10.1016/j.renene.2010.06.007. [CrossRef] [Google Scholar]
- Kumar R., Rosen M.A. (2011) A critical review of photovoltaic-thermal solar collectors for air heating, Appl. Energy 88, 11, 3603–3614. https://doi.org/10.1016/j.apenergy.2011.04.044. [CrossRef] [Google Scholar]
- Catalano A. (1996) Polycrystalline thin-film technologies: Status and prospects, Sol. Energy Mater. Sol. Cells 41–42, 205–217. https://doi.org/10.1016/0927-0248(95)00144-1. [CrossRef] [Google Scholar]
- Efaz E.T., Rhaman M.M., Al Imam S., Bashar K.L., Kabir F., Mourtaza M.E., Sakib S.N., Mozahid F.A. (2021) A review of primary technologies of thin-film solar cells. Eng. Res. Express. 3, 032001. https://doi.org/10.1088/2631-8695/ac2353. [CrossRef] [Google Scholar]
- Jelodarian P. (2011) Progress in solar cells and state of the art and future view of photovoltaic solar electricity in the world, in: 20th World Petroleum Congress, Doha, Qatar, December. [Google Scholar]
- Green M.A., Zhao J., Wang A., Wenham S.R. (2001) Progress and outlook for high-efficiency crystalline silicon solar cells, Sol. Energy Mater. Sol. Cells 65, 1, 9–16. https://doi.org/10.1016/S0927-0248(00)00072-6. [CrossRef] [Google Scholar]
- Marsh J. (2023) Which type of solar panel is best for you? Energy Sage. Available at https://www.energysage.com/solar/types-of-solar-panels. [Google Scholar]
- Deb S.K. (1998) Recent developments in high eficiency photovoltaic cells, Renew. Energy 15, 1–4, 467–472. https://doi.org/10.1016/s0960-1481(98)00206-7. [CrossRef] [Google Scholar]
- GeoTherm (2022) Monocrystalline vs polycrystalline: which solar panel is better? Accelerate Media. Available at https://geothermhvac.com/mono-vs-poly-better/. [Google Scholar]
- Kumari N., Singh S.K., Kumar S., Jadoun V.K. (2024) Performance analysis of partially shaded high-efficiency mono PERC/mono crystalline PV module under indoor and environmental conditions, Sci. Rep. 14, 1, 1–18. https://doi.org/10.1038/s41598-024-72502-z. [CrossRef] [Google Scholar]
- Husain A.A.F., Hasan W.Z.W., Shafie S., Hamidon M.N., Pandey S.S. (2018) A review of transparent solar photovoltaic technologies, Renew. Sustain. Energy Rev. 94, 779–791. https://doi.org/10.1016/j.rser.2018.06.031. [CrossRef] [Google Scholar]
- Huang J., Li G., Yang Y. (2008) A semi-transparent plastic solar cell fabricated by a lamination process, Adv. Mater. 20, 3, 415–419. https://doi.org/10.1002/adma.200701101. [CrossRef] [Google Scholar]
- N’Tsoukpoe K.E. (2022) Effect of orientation and tilt angles of solar collectors on their performance: Analysis of the relevance of general recommendations in the West and Central African context, Sci. African 15, e01069. https://doi.org/10.1016/j.sciaf.2021.e01069. [Google Scholar]
- Smith S.E., Viggiano B., Ali N., Silverman T.J., Obligado M., Calaf M., Cal R.B. (2022) Increased panel height enhances cooling for photovoltaic solar farms, Appl. Energy 325, 1, 119819. https://doi.org/10.1016/j.apenergy.2022.119819. [CrossRef] [Google Scholar]
- Kichou S., Skandalos N., Wolf P. (2022) Floating photovoltaics performance simulation approach, Heliyon 8, 12, e11896. https://doi.org/10.1016/j.heliyon.2022.e11896. [Google Scholar]
- Yilmaz S., Ozcalik H.R., Kesler S., Dincer F., Yelmen B. (2015) The analysis of different PV power systems for the determination of optimal PV panels and system installation–a case study in Kahramanmaras, Turkey, Renew. Sustain. Energy Rev. 52, 1015–1024. https://doi.org/10.1016/j.rser.2015.07.146. [CrossRef] [Google Scholar]
- Ghosh A. (2023) A comprehensive review of water based PV: Flotavoltaics, under water, offshore & canal top, Ocean Eng. 281, 115044. https://doi.org/10.1016/j.oceaneng.2023.115044. [CrossRef] [Google Scholar]
- Huang G., Tang Y., Chen X., Chen M., Jiang Y. (2023) A comprehensive review of floating solar plants and potentials for offshore applications, J. Mar. Sci. Eng. 11, 11, 2064. https://doi.org/10.3390/jmse11112064. [CrossRef] [Google Scholar]
- Ikhennicheu M., Danglade B., Pascal R., Arramounet V., Trébaol Q., Gorintin F. (2020) Analytical method for loads determination on floating solar farms in three typical environments, Sol. Energy 219, 34–41. https://doi.org/10.1016/j.solener.2020.11.078. [Google Scholar]
- Wu S., Jiang N., Zhang S., Zhang P., Zhao P., Liu Y., Wang Y. (2024) Discussion on the development of offshore floating photovoltaic plants, emphasizing marine environmental protection, Front. Mar. Sci. 11, 1336783. https://doi.org/10.3389/fmars.2024.1336783. [CrossRef] [Google Scholar]
- Whittaker T., Folley M., Hancock J. (2020) Environmental loads, motions, and mooring systems , Elsevier Inc. https://doi.org/10.1016/B978-0-12-817061-8.00005-1. [Google Scholar]
- Gold Coast Waterways Authority (2014) Review of mooring infrastructure technology Q0294 GCWA – buoy mooring review approval, Australia. Available at https://gcwa.qld.gov.au/wp-content/uploads/2022/06/BuoyMoorings-Review-Mooring-Infrastructure-2014.pdf. [Google Scholar]
- Oliveira-Pinto S., Stokkermans J. (2020) Assessment of the potential of different floating solar technologies – overview and analysis of different case studies, Energy Convers. Manag. 211, 112747. https://doi.org/10.1016/j.enconman.2020.112747. [CrossRef] [Google Scholar]
- A Full Understanding of Hybrid Solar Inverter – Guangzhou Anern Energy Technology Co. Available at https://www.anern.com/a-full-understanding-of-hybrid-solar-inverter/ [Google Scholar]
- Pandey A.K., Tyagi V.V., Selvaraj J.A., Rahim N.A., Tyagi S.K. (2016) Recent advances in solar photovoltaic systems for emerging trends and advanced applications, Renew. Sustain. Energy Rev. 53, 859–884. https://doi.org/10.1016/j.rser.2015.09.043. [CrossRef] [Google Scholar]
- Goswami A., Sadhu P., Goswami U., Sadhu P.K. (2019) Floating solar power plant for sustainable development: A techno‐economic analysis, Environ. Prog. Sustain. Energy 38, 6, e13268. [CrossRef] [Google Scholar]
- Alhassan M.O., Opoku R., Uba F., Obeng G.Y., Sekyere C.K.K., Nyanor P. (2023) Techno-economic and environmental estimation assessment of floating solar PV power generation on Akosombo dam reservoir in Ghana, Energy Rep. 10, 2740–2755. https://doi.org/10.1016/j.egyr.2023.09.073. [CrossRef] [Google Scholar]
- Charles Rajesh Kumar J., Vinod Kumar D., Baskar D., Mary Arunsi B., Jenova R., Majid R. (2021) Offshore wind energy status, challenges, opportunities, environmental impacts, occupational health, and safety management in India, Energy Environ. 32, 4, 565–603. https://doi.org/10.1177/0958305X20946483. [CrossRef] [Google Scholar]
- Charles Rajesh Kumar J., Majid M.A. (2023) Floating solar photovoltaic plants in India–A rapid transition to a green energy market and sustainable future, Energy Environ. 34, 2, 304–358. https://doi.org/10.1177/0958305X211057185. [CrossRef] [Google Scholar]
- Exley G., Hernandez R.R., Page T., Chipps M., Gambro S., Hersey M., Lake R., Zoannou K.-S., Armstrong A. (2021) Scientific and stakeholder evidence-based assessment: ecosystem response to floating solar photovoltaics and implications for sustainability, Renew. Sustain. Energy Rev. 152, 111639. https://doi.org/10.1016/j.rser.2021.111639. [CrossRef] [Google Scholar]
- Domakonda V. K., Farooq S., Chinthamreddy S., Puviarasi R., Sudhakar M., Boopathi S. (2023) Sustainable developments of hybrid floating solar power plants: photovoltaic system, in: Vasant P., Rodríguez-Aguilar R., Litvinchev I., Marmolejo-Saucedo J. (eds.),Human agro-energy optimization for business and industry, IGI Global, pp. 148–167. https://doi.org/10.4018/978-1-6684-4118-3.ch008. [Google Scholar]
- Gonzalez Sanchez R., Kougias I., Moner-Girona M., Fahl F., Jäger-Waldau A. (2021) Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa, Renew. Energy 169, 2021, 687–699. https://doi.org/10.1016/j.renene.2021.01.041. [CrossRef] [Google Scholar]
- Dellosa J.T., Palconit E.V., Enano N.H. (2024) Risk assessment and policy recommendations for a floating solar photovoltaic (FSPV) system, IEEE Access 12, 30452–30471. https://doi.org/10.1109/ACCESS.2024.3368620. [Google Scholar]
- Solomin E., Sirotkin E., Cuce E., Selvanathan S.P., Kumarasamy S. (2021) Hybrid floating solar plant designs: a review, Energies 14, 10, 2751. https://doi.org/10.3390/en14102751. [CrossRef] [Google Scholar]
- Friel D., Karimirad M., Whittaker T., Doran J., Howlin E. (2019) A review of floating photovoltaic design concepts and installed variations, in: 4th International Conference on Offshore Renewable Energy CORE 2019, Glasgow, 30 August, ASRANet Ltd, Glasgow, UK. Available at https://pure.qub.ac.uk/en/publications/a-review-of-floating-photovoltaic-design-concepts-and-installed-variations(bf7bdfdf-feb7-46b8-8a52-bc144c3996f8).html . [Google Scholar]
- Stuiver M., Soma K., Koundouri P., Van den Burg S., Gerritsen A., Harkamp T., Dalsgaard N., Zagonari F., Guanche R., Schouten J.-J., Hommes S., Giannouli S., Söderqvist T., Rosen L., Garção R., Norrman J., Röckmann C., De Bel M., Zanuttigh B., Petersen O.L., Møhlenberg F. (2016) The governance of multi-use platforms at sea for energy production and aquaculture: challenges for policy makers in European seas, Sustainability 8, 333. https://doi.org/10.3390/su8040333. [CrossRef] [Google Scholar]
- Abhinav K.A., Collu M., Benjamins S., Cai H., Hughes A., Jiang B., Jude S., Leithead W., Lin C., Liu H., Recalde-Camacho L. (2020) Offshore multi-purpose platforms for a Blue Growth: A technological, environmental and socio-economic review, Sci. Total Environ. 734, 138256. https://doi.org/10.1016/j.scitotenv.2020.138256. [CrossRef] [Google Scholar]
- Vlaswinkel B., Roos P., Nelissen M. (2023) Environmental observations at the first offshore solar farm in the North Sea, Sustainability 15, 8, 6533. https://doi.org/10.3390/su15086533. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.